Планирование Мотивация Управление

Летающая подводная лодка ушакова. "подводные авианосцы". Дальнейшие разработки подъёмной силе - «утопляющую силу», но только тогда, когда лодка находится в движении. Таким образом, недостатком подобного технического решения является то, что лодка медленно

В СССР накануне второй мировой войны был предложен проект летающей подводной лодки - проект, никогда не реализованный.

С 1934 по 1938 гг. проектом летающей подводной лодки руководил Борис Ушаков. Летающая подводная лодка представляла собой трёхмоторный двух поплавковый гидросамолет, оборудованный перископом. Ещё во время обучения в Высшем морском инженерном институте имени Ф. Э. Дзержинского в Ленинграде (ныне Военно-морской инженерный институт), с 1934 года и вплоть до его окончания в 1937 году, студент Борис Ушаков работал над проектом, в котором возможности гидросамолёта дополнены возможностями подводной лодки. В основе изобретения был гидросамолёт, способный погружаться под воду.
В 1934 году курсант ВМИУ им. Дзержинского Б. П. Ушаков представил схематичный проект летающей подводной лодки, который впоследствии был переработан и представлен в нескольких вариантах для определения остойчивости и нагрузок на элементы конструкции аппарата.
В апреле 1936 года в отзыве капитана 1 ранга Сурина указывалось, что идея Ушакова интересна и заслуживает безусловной реализации. Через несколько месяцев, в июле, полу эскизный проект ЛПЛ рассматривался в Научно-исследовательском военном комитете (НИВК) и получил в целом положительный отзыв, содержавший три дополнительных пункта, один из которых гласил: «…Разработку проекта желательно продолжать, чтобы выявить реальность его осуществления путем производства соответствующих расчетов и необходимых лабораторных испытаний…» Среди подписавших документ были начальник НИВКа военинженер 1 ранга Григайтис и начальник кафедры тактики боевых средств флагман 2 ранга профессор Гончаров.
В 1937 году тема была включена в план отдела «В» НИВК-а, но после его пересмотра, что было очень характерно для того времени, от нее отказались. Вся дальнейшая разработка велась инженером отдела «В» воентехником 1 ранга Б. П. Ушаковым во внеслужебное время.
Советский проект летающей подводной лодки. Советский проект летающей 2
10 января 1938 года во 2-м отделе НИВК-а состоялось рассмотрение эскизов и основных тактико-технических элементов летающей подводной лодки, подготовленных автором, Что же представлял собой проект? Летающая подводная лодка предназначалась для уничтожения кораблей противника в открытом море и в акватории морских баз, защищенных минными полями и бонами. Малая подводная скорость и ограниченный запас хода под водой не являлись препятствием, так как при отсутствии целей в заданном квадрате (районе действия) лодка могла сама находить противника. Определив с воздуха его курс, она садилась за горизонтом, что исключало возможность ее преждевременного обнаружения, и погружалась на линии пути корабля. До появления цели в точке залпа летающая подводная лодка оставалась на глубине в стабилизированном положении, не расходуя энергию лишними ходами.


В случае допустимого отклонения неприятеля от линии курса летающая подводная лодка шла на сближение с ним, а при очень большом отклонении цели лодка пропускала ее за горизонт, затем всплывала, взлетала и вновь готовилась к атаке.
Возможное повторение захода на цель рассматривалось как одно из существенных преимуществ подводно-воздушного торпедоносца перед традиционными субмаринами. Особенно эффективным должно было быть действие летающих подводных лодок в группе, так как теоретически три таких аппарата создавали на пути противника непроходимый барьер шириной до девяти миль. Летающая подводная лодка могла проникать в темное время суток в гавани и порты противника, погружаться, а днем вести наблюдение, пеленгование секретных фарватеров и при удобном случае атаковать. В конструкции летающей подводной лодки предусматривались шесть автономных отсеков, в трех из которых помещались авиамоторы АМ-34 мощностью по 1000 л. с. каждый. Они снабжались нагнетателями, допускавшими форсирование на взлетном режиме до 1200 л. с. Четвертый отсек был жилым, рассчитанным на команду из трех человек. Из него же велось управление судном под водой. В пятом отсеке находилась аккумуляторная батарея, в шестом – гребной электромотор мощностью 10 л. с. Прочный корпус летающей подводной лодки представлял собой цилиндрическую клепаную конструкцию диаметром 1,4 м из дюралюминия толщиной 6 мм. Помимо прочных отсеков, лодка имела пилотскую легкую кабину мокрого типа, которая при погружении заполнялась водой, При этом летные приборы задраивались в специальной шахте.
Обшивку крыльев и хвостового оперения предполагалось выполнить из стали, а поплавки из дюралюминия. Эти элементы конструкции не были рассчитаны на повышенное внешнее давление, так как при погружении затапливались морской водой, поступавшей самотеком через шпигаты (отверстия для стока воды). Топливо (бензин) и масло хранились в специальных резиновых резервуарах, располагавшихся в центроплане. При погружении подводящая и отводящая магистрали водяной системы охлаждения авиамоторов перекрывались, что исключало их повреждение под действием давления забортной воды. Для предохранения корпуса от коррозии предусматривалась окраска и покрытие лаком его обшивки. Торпеды размещались под консолями крыла на специальных держателях. Проектная полезная нагрузка лодки составляла 44,5% от полного полетного веса аппарата, что было обычным для машин тяжелого типа.


Процесс погружения включал четыре этапа: задраивание моторных отсеков, перекрывание воды в радиаторах, перевод управления на подводное и переход экипажа из кабины в жилой отсек (центральный пост управления).»
Моторы в подводном положении закрывались металлическими щитами. Летающая подводная лодка должна была иметь 6 герметичных отсеков в фюзеляже и крыльях. В трёх герметизируемых при погружении отсеках устанавливались моторы Микулина АМ-34 по 1000 л. с. каждый (с турбокомпрессором на взлётном режиме до 1200 л. с.); в герметичной кабине должны были располагаться приборы, аккумуляторная батарея и электромотор. Оставшиеся отсеки должны использоваться как заполненные балластной водой цистерны для погружения летающей подводной лодки. Подготовка к погружению должна была занимать всего пару минут.
Фюзеляж должен был представлять собой цельнометаллический дюралюминиевый цилиндр диаметром 1,4 м с толщиной стенок 6 мм. Кабина пилота при погружении заполнялась водой. Поэтому все приборы предполагалось устанавливать в водонепроницаемый отсек. Экипаж должен был перейти в отсек управления подводным плаванием, расположенный далее в фюзеляже. Несущие плоскости и закрылки должны изготавливаться из стали, а поплавки из дюралюминия. Эти элементы предполагалось заполнять водой через предусмотренные для этого клапаны, чтобы выровнять давление на крылья при погружении. Гибкие баки горючего и смазочных материалов должны располагаться в фюзеляже. Для коррозионной защиты весь самолёт должен был быть покрыт специальными лаками и красками. Две 18-ти дюймовых торпеды подвешивались под фюзеляжем. Планируемая боевая нагрузка должна была составлять 44,5 % полной массы самолёта. Это типовое значение тяжёлых самолётов того времени. Для заполнения цистерн водой использовался тот же электромотор, что обеспечивал движение под водой.
В 1938 году научно-исследовательский военный комитет РККА постановил свернуть работы по проекту Летающей подводной лодки по причине недостаточной подвижности ее в подводном положении. В постановлении говорилось, что после обнаружения Летающей подводной лодки кораблём последний, несомненно, сменит курс. Что снизит боевую ценность ЛПЛ и с большой степенью вероятности приведёт к провалу задания. Технические характеристики Летающей подводной лодки:
Экипаж, чел.: 3;
Взлётная масса, кг: 15000;
Скорость полёта, узлов: 100 (~185 км/ч);
Дальность полёта, км: 800;
Потолок, м: 2500;
Авиамоторы: 3xAM-34;
Мощность на взлётном режиме, л. с.: 3x1200;
Максимально доп. волнение при взлёте/посадке и погружении, баллов: 4-5;
Подводная скорость, узлов: 2–3;
Глубина погружения, м: 45;
Запас хода под водой, мили: 5–6;
Подводная автономность, час: 48;
Мощность гребного мотора, л. с.: 10;
Продолжительность погружения, мин: 1,5;

Летающая подводная лодка - летательный аппарат, совместивший в себе способность гидроплана совершать взлёт и посадку на воду и способность подводной лодки передвигаться в подводном положении.

Поскольку требования, предъявляемые к подводной лодке практически противоположны требованиям, предъявляемым к совершенному самолёту - детальная проработка проекта подобного средства передвижения была поистине

революционной.

Воздушный корабль (англ. Aeroship)

По результатам постройки Commander Рэйда было принято решение о строительстве Aeroship. Это был двухфюзеляжный самолёт с прямоточными воздушно-реактивными двигателями. Посадка на воду осуществлялась на выдвигающиеся поплавки, внешне напоминающие водные лыжи. Непосредственно перед посадкой реактивные двигатели герметизировались. Баки горючего располагались в несущих плоскостях.

Дальность полёта Aeroship составляла до 300 км, при скорости полёта до 130 км/ч; скорость хода под водой - 8 узлов. Aeroship был представлен публике в августе 1968 года на нью-йоркской промышленной выставке: на глазах у посетителей выставки летающая субмарина совершила эффектную посадку, погрузилась под воду и снова всплыла на поверхность.

Технические проблемы

Летающая подводная лодка должна быть одинаково эффективной и в воде, и в воздухе. И это при том, что вода в 775 раз плотнее воздуха.

Наибольшей технической проблемой является масса летающей субмарины. В соответствии с законом Архимеда, для нахождения под водой на постоянной глубине, масса вытесняемой субмариной воды должна быть равна массе самой субмарины. Это противоречит подходу к проектированию летательного аппарата, который гласит, что самолёт должен быть как можно легче. Таким образом, чтобы самолёт смог находиться под водой, он должен увеличить свой вес примерно в четыре раза.
В фюзеляже или в крыльях должны быть встроены большие водяные цистерны (до 30 % объёма самолёта), чтобы самолёт получил возможность погружаться, заполнив ёмкости балластной водой.
В то же время, трудно создать мощные (и в то же время лёгкие) аккумулятор и электромотор для эффективного перемещения такой массы под водой.

Следующей серьёзной проблемой является значительное сопротивление воды на крылья при движении. Крылья не позволяют летающей субмарине развивать большу́ю скорость под водой. Другими словами, либо крылья должны убираться или отбрасываться, или следует устанавливать более мощный электромотор.

Далее, трудноразрешимой проблемой является давление воды на больших глубинах. На каждые 10 метров глубины давление вырастает на 1 атмосферу, плюс ещё одна атмосфера давления воздуха на поверхность воды.
Так, например, на глубине 25 метров давление составляет 3,5 атмосферы, а на глубине 50 метров уже 6 атмосфер. Это настолько значительные величины, что на таких глубинах давление не выдержит ни один обычный самолёт. Таким образом, чтобы противодействовать давлению необходимо значительно увеличить прочность, а следовательно - массу самолёта.

Если, например, летающая подводная лодка должна взлетать не с поверхности воды, как обычные гидросамолёты, а непосредственно из-под воды, то для подобного взлёта необходимы ещё более мощные двигатели для преодоления силы поверхностного натяжения жидкости. Кроме того, при разработке необходимо также учитывать зачастую противоречащие друг другу требования аэродинамики и гидродинамики.

США

Летающая подводная лодка: Чертёж к патенту США № 2720367 от 1956 г.

Во время холодной войны американские стратеги предполагали серьёзные проблемы по проводке и использованию кораблей и подводных лодок в акваториях Балтийского, Чёрного и Азовского морей.
Однако проблему можно легко решить с помощью летающих подводных лодок. Подобным способом можно затруднить передвижение судов даже во внутреннем Каспийском море.

Поскольку в вышеупомянутых морях советское правительство никак не ожидало увидеть американские военно-морские силы - следовало предположить, что там отсутствуют какие бы то ни было средства обнаружения подводных лодок. Опыт использования итальянских и японских мини-субмарин во время Второй мировой войны показал, что после выполнения задания экипаж практически невозможно эвакуировать.
Таким образом была сформулирована цель, которую должны были решать мини-субмарины: неожиданное появление, атака советских кораблей и безопасная эвакуация экипажа.

В 1945 году американский изобретатель Хьюстон Харрингтон (англ. Houston Harrington) подал заявку на патент «Совмещение самолёта и подводной лодки». В 1956 году опубликован американский патент № 2720367, в котором изложена идея летающей мини-субмарины. Подводное плавание должно было осуществляться электромотором.
Взлёт и посадка должны были осуществляться на водную поверхность. Летать самолёт должен был посредством двух реактивных двигателей, герметизируемых при погружении.
Самолёт должен был быть вооружён одной торпедой. В настоящее время в США под руководством ВМФ разрабатывается подобный проект, называемый Корморант (англ. Cormorant), представляющий собой вооружённый беспилотный летательный аппарат, запускаемый с борта подводной лодки.

СССР

В середине 30-х годов Советский Союз начал строительство мощного флота. Планы строительства подразумевали ввод в строй линкоров, авианосцев и вспомогательных кораблей прочих классов. Существовали многочисленные идеи технических и тактических решений поставленных задач.
В СССР накануне второй мировой войны был предложен проект летающей подводной лодки - проект, никогда не реализованный.

С 1934 по 1938 гг. проектом летающей подводной лодки (сокращённо: ЛПЛ) руководил Борис Ушаков. ЛПЛ представляла собой трёхмоторный двухпоплавковый гидросамолет, оборудованный перископом.

Ещё во время обучения в Высшем морском инженерном институте имени Ф. Э. Дзержинского в Ленинграде (ныне Военно-морской инженерный институт), с 1934 года и вплоть до его окончания в 1937 году, студент Борис Ушаков работал над проектом, в котором возможности гидросамолёта дополнены возможностями подводной лодки.
В основе изобретения был гидросамолёт, способный погружаться под воду. За годы работы над проектом он много раз перерабатывался, в результате чего существует множество вариантов реализации узлов и конструкционных элементов. В апреле 1936 года проект Ушакова был рассмотрен компетентной комиссией, которая нашла его достойным рассмотрения и воплощения в прототипе.

В июле 1936 года эскизный проект летающая подводная лодка был передан на рассмотрение в научно-исследовательский военный комитет РККА. Комитет принял проект к рассмотрению и приступил к проверке предоставленных теоретических выкладок.

В 1937 году проект был передан к исполнению отделу «В» научно-исследовательского комитета. Однако, при проведении повторных расчётов были найдены неточности, которые привели к его приостановке. Ушаков, теперь уже в должности воентехника первого ранга, служил в отделе «В» и, в свободное время продолжал работу над проектом.

В январе 1938 года вновь переработанный проект был вновь рассмотрен вторым отделом комитета. Окончательная версия ЛПЛ представляла собой цельнометаллических самолёт со скоростью полёта 100 узлов и скоростью хода под водой порядка 3-х узлов.

Моторы в подводном положении закрывались металлическими щитами. ЛПЛ должна была иметь 6 герметичных отсеков в фюзеляже и крыльях. В трёх герметизируемых при погружении отсеках устанавливались моторы Микулина АМ-34 по 1000 л. с. каждый (с турбокомпрессором на взлётном режиме до 1200 л. с.); в герметичной кабине должны были располагаться приборы, аккумуляторная батарея и электромотор.

Оставшиеся отсеки должны использоваться как заполненные балластной водой цистерны для погружения ЛПЛ. Подготовка к погружению должна была занимать всего пару минут. Фюзеляж должен был представлять собой цельнометаллический дюралюминиевый цилиндр диаметром 1,4 м с толщиной стенок 6 мм.
Кабина пилота при погружении заполнялась водой. Поэтому все приборы предполагалось устанавливать в водонепроницаемый отсек. Экипаж должен был перейти в отсек управления подводным плаванием, расположенный далее в фюзеляже. Несущие плоскости и закрылки должны изготавливаться из стали, а поплавки из дюралюминия.
Эти элементы предполагалось заполнять водой через предусмотренные для этого клапаны, чтобы выравнять давление на крылья при погружении. Гибкие баки горючего и смазочных материалов должны располагаться в фюзеляже. Для коррозионной защиты весь самолёт должен был быть покрыт специальными лаками и красками.
Две 18-ти дюймовых торпеды подвешивались под фюзеляжем. Планируемая боевая нагрузка должна была составлять 44,5 % полной массы самолёта. Это типовое значение тяжёлых самолётов того времени. Для заполнения цистерн водой использовался тот же электромотор, что обеспечивал движение под водой.

ЛПЛ предусматривалось использовать для торпедной атаки судов в открытом море. Она должна была обнаружить корабль с воздуха, вычислить его курс, выйти из зоны видимости корабля и, перейдя в подводное положение, атаковать его.

Ещё одним возможным способом использования ЛПЛ было преодоление минных заграждений вокруг баз и районов плавания вражеских судов. ЛПЛ должна была под покровом темноты перелететь минные поля и занять позицию для разведки или выжидания и атаки в подводном положении. Дальнейшим тактическим манёвром должна была стать группа ЛПЛ, способная успешно атаковать все суда в зоне, протяжённостью до 15 км.

В 1938 году научно-исследовательский военный комитет РККА постановил свернуть работы по проекту Летающей подводной лодки по причине недостаточной подвижности ЛПЛ в подводном положении. В постановлении говорилось, что после обнаружения ЛПЛ кораблём, последний, несомненно, сменит курс. Что снизит боевую ценность ЛПЛ и с большой степенью вероятности приведёт к провалу задания.

Летающая субмарина Рэйда (RFS-1)

Дональд Рэйд (англ. Donald V. Reid) в начале 60-х годов прошлого столетия построил радиоуправляемую демонстрационную модель летающей подводной лодки с размерами 1х1 метр.

В 1964 году его изобретение удостоилось статьи в одном из научно-популярных журналов Америки. В статье было впервые применено слово Трифибия, по аналогии с амфибией. Конечно же эта статья вызвала интерес военных, которые захотели воплотить проект в металл. Разработка проекта была передана корпорациям Consolidated Vultee Aircraft Corporation и Electric Boat (подразделение General Dynamics). В результате проведённого исследования была подтверждена реализуемость проекта.

В 1964 году Рэйд, по заказу ВМС США, построил в Асбури Парк (штат Нью-Джерси) масштабную копию летающей подводной лодки Commander-1. Commander стал первой американской летающей подводной лодкой. Прототип выставлен на обозрение в Средне-атлантическом музее в городе Рединг (штат Пенсильвания).

Действующий прототип Commander-2 был испытан на всех режимах. Он мог погружаться на глубину до 2 метров, двигаться под водой со скоростью 4 узла. Проектная скорость полёта прототипа должна была составить 300 км/ч, однако достигнута была скорость порядка 100 км/ч.
Первый полёт прошёл 9 июля 1964 года. После погружения на глубину 2 метра был произведён взлёт и краткий полёт на высоте 10 метров.
Для погружения двигатель герметизировался резиновыми уплотнителями и с него снимался пропеллер. Пилот подключался к дыхательному аппарату и при подводном движении находился в открытой кабине. В хвосте располагался электромотор мощностью 736 Ватт.
Самолёт имел номер 1740 и летал при помощи одного четрёхцилиндрового двигателя внутреннего сгорания мощностью 65 л. с. Commander получил дельтавидное крыло, длина фюзеляжа составляет 7 метров.
Баки с горючим представляли собой также цистерны для погружения. После посадки на воду горючее откачивалось в воду и в баки закачивалась балластная вода. То есть взлёт после погружения был в принципе невозможен.


Многие, с первого взгляда абсурдные технические решения, проходят очень долгий путь до конечного воплощения. Самолёты, как известно, летают по воздуху. Субмарины - жить без воды не могут. А так ли уж велика разница между ними?

«Рождённый ползать - летать не может», - таков приговор классика. При помощи этого словесного конструктора можно наштамповать ещё несколько крылатых фраз.

«Рождённый ездить - летать не может». «Рождённый плавать не может ездить». Ну, это просто наглая ложь. Существует много проектов летающих автомобилей и ещё больше амфибий.

А как насчёт «рождённый летать не может плавать под водой», и наоборот? Затрудняетесь с ответом? А Фантомас с агентом 007, на своих продвинутых вездесущих авто? И, как мы сейчас поведаем, такое бывает не только в кино.

Вообще-то, история вопроса идёт с начала ХХ века, ну а мы начнём с конца. А долгий путь исканий конструкторов опишем в следующей статье. Итак, подводный самолёт, он же — U-Plane (Undersea-Plane).

Самолётом это транспортное средство можно назвать с большими оговорками, поскольку летает он только под водой. Ну, тогда ведь он - подводная лодка? Вот и нет.

Deep Flight I - первенец подводной авиации (фото с сайта deepflight.com).

Как передвигается субмарина? Крутит себе винтом, двигает рулём туда-сюда - так и плывёт. А вверх-вниз? В основном, за счёт изменения плавучести, или своего веса в воде.

Надо ей вниз - набирает забортную воду в балластные цистерны и «тонет». Хочет вверх - продувает цистерны воздухом или сбрасывает лишний груз (что делают по большей части батискафы и водолазы).

Подводный самолёт устроен принципиально иначе. Он не имеет никаких систем изменения плавучести, а все перемещения в вертикальной плоскости регулирует при помощи крыльев, точно как воздушное судно.

Поэтому подводный самолёт отличается от подводной лодки точно так же, как обычный - от воздушного шара или дирижабля. Если «плотность» субмарины примерно соответствует окружающей среде, то самолёт-ныряльщик всегда легче.


DF1 не слишком похож на водолазный скафандр (фото с сайта deepflight.com).

Только крылья у него совсем маленькие, как у цыплёнка. Это и понятно, плотность воды значительно выше, чем у воздушного потока, и подъёмная сила создаётся другая.

Ну и ещё, сам поперечный профиль крыла зеркально симметричен авиационному, ведь «взлетать» требуется не вверх, а вниз, на глубину. Следовательно, необходимо создавать отрицательную подъёмную силу. Как видите, всё очень просто.

Строит такие аппараты фирма Hawkes Ocean Technologies (HOT), состоящая из руководителя - Грэхема Хоукса (Graham Hawks), его жены, инженера-электронщика и трёх инженеров-механиков. Не так уж и много сотрудников. А что они успели сконструировать на ниве подводной авиации?

Во всяком случае, не меньше единственного конкурента - JAMSTEC (Japan Marine Science and Technology Center – Японский Центр морской науки и технологии) - государственного консорциума с многомиллионным бюджетом.


Ну чем не истребитель?

Правда, HOT тоже не обделена вниманием со стороны спонсоров: ей помогают, по мере скромных возможностей, Hewlett Packard, Autodesk (производитель ПО AutoCAD), Rolex, IMAX и другие добрые люди.

Двухместный вариант несуществующего DF II (фото с сайта deepflight.com).

Благодаря такому участию, в сентябре 1996-го под воду был спущен самолёт Deep Flight I (DF I — «Глубокий полёт»), обошедшийся создателям в один миллион долларов.

Присмотримся повнимательнее к этому плавательному аппарату.

DF I весьма невелик (длина 4 метра, размах крыльев 2,4 метра, высота 0,9 метра) и представляет собой, по существу, жёсткий скафандр обтекаемой формы.

Интересно, что пилот располагается внутри самолёта в необычном горизонтальном положении: на животе, головой вперёд.

С одной стороны, в воде не ощутимы привычные понятия верха и низа, с другой - такая позиция характерна для всех плавающих существ.

DFA: осталось только взлететь (фото с сайта deepflight.com).

Небольшие размеры и вес (1300 кг) DF I значительно упрощают процедуры спуска-подъёма самолёта.

Напомним, что прочим малым подводным аппаратам для этого необходимы дорогостоящие корабли сопровождения с мощными лебёдками.

Максимальная расчётная глубина погружения DF I составляет 1 км, но пилоты не рисковали заходить столь глубоко. Считается, что этот самолёт - не более чем прототип.

Во время первых погружений, снимавшихся для телевидения, аппарат не опускался ниже отметки в 50 метров, чтобы не слишком напрягать оператора в легководолазном оборудовании.

А после этого «полёты» вообще прекратились. Вполне возможно, что конструкторы всё же чего-то недорассчитали и недоучли.

Ещё рискнём предположить, что DF I не может неподвижно висеть на глубине, как «подводный вертолёт»: при отсутствии тянущей вниз «подъёмной» силы он неизбежно, из-за своего малого веса, сорвётся в штопор и окажется на поверхности воды.

Чтобы зависнуть на месте, DF I жизненно необходимо испить солёной воды.

Добавим, для порядка, что взлётная скорость самолёта составляла 2 узла (1 морской узел – 1,852 км/час), крейсерская - 4-8 узлов, а максимальная - целых 12.

Тем временем, жизнь не стоит на месте, и в 1997 году уже готов следующий аппарат - Wet Flight (WF — «Мокрый полёт»).

На этот раз проект был вполне себе коммерческим - WF предназначался для съёмок фильма о жизни подводных обитателей для сети панорамных кинотеатров IMAX.

Каковая задача и была успешно решена: в прокат вышел фильм Dolphins: The Ride («Прогулки дельфинов»), в котором морская жизнь представлялась с точки зрения стремительно плывущего китообразного.

Надо думать, что и конструкторы внакладе не остались, они и сейчас предлагают воспользоваться WF всем желающим поснимать под водой.

И вы могли бы так развлечься на Багамах.

WF отличается от своего предшественника: он поменьше и в полтора раза легче, представляет собой, по существу, мобильную подводную съёмочную платформу.

На этот раз требуемая глубина погружения не превосходила 40 метров, поэтому не было необходимости строить герметичную капсулу для пилота - он просто возлежал за прозрачным защитным обтекателем, как какой-нибудь пионер авиации, вдыхая воздух из встроенного акваланга.

Между тем, в HOT строят грандиозные планы спуска в Марианскую впадину, на глубину свыше 11 километров. Для этих целей спроектирован более массивный и солидный Deep Flight II .

Вообще, подводные самолёты могут обеспечить высокие вертикальные скорости погружения: до 7км/час, а всплытия - все 12. Дело лишь за возможностями человеческого организма.

Но, на больших глубинах уже не обойтись акрилово-кевларовыми корпусами самолётов. Для погружения на 6 км необходим титановый корпус, а для достижения дна Марианской впадины (операция «Эверест») - фюзеляж из особой высокопрочной керамики, разработанной для ВМФ США.

Грэхэм Хоукс за штурвалом своего Авиатора (фото с сайта incredible-adventures.com/).

Стоимость проекта оценивается в $15 миллионов. Интересно, что DF II разработан по модульной схеме, его можно собрать одноместным или двухместным, а также оснастить навесным оборудованием.

Одна беда - нет вожделенной суммы на строительство. Видимо, для разрешения этой проблемы НОТ строит последний на сегодня самолёт: двухместный Deep Flight Aviator и организует Подводную лётную школу (

Летающая субмарина

Летающая субмарина или иначе летающая подводная лодка (ЛПЛ) — это подлодка, которая способна совершить, как взлет так и посадку на воду, а также может перемещаться в воздушном пространстве. Не реализованный советский проект, целью которого было совмещение скрытности подлодки и мобильности самолета. В 1938 году этот проект был свернут, так и не успев воплотится в жизнь.

Предпосылки к возникновению проекта.

Еще за пять лет до возникновения проекта, в начале 30-х годов возникали попытки совместить подлодку с самолетом, но результатом почти всегда были просто компактные, легкие, складывающиеся летательные аппараты, которые должны были поместиться внутри подлодки. А вот проектов подобных ЛПЛ не существовало, ведь конструкция самолета исключает возможность подводного плавания, а уж подводная лодка тоже вряд ли полетит. Но инженерная мысль одного выдающегося человека смогла два этих характерных свойства совместить в одном аппарате.

Краткая история проекта летающей субмарины.

В середине 30-х годов прошлого века, благодаря новым реформам Сталина, было решено приступить к созданию мощного военно-морского флота с линкорами, авианосцами и кораблями различных классов. Появилось множество идеи по созданию необычных, с технической стороны, аппаратов, в том числе и идея по созданию летающей субмарины.


Летающая подлодка Ушакова

С 1934 по 1938 гг. проектом по созданию летающей подлодки руководил Борис Ушаков. Он, еще во время учебы в Высшем морском инженерном институте имени Ф.Э. Дзержинского в Ленинграде с 1934 года по 1937 год окончания учебы, работал над проектом в котором то и хотел совместить лучшие характеристики самолета и подводной лодки.


План подлодного самолета Ушакова

Ушаков еще в 1934 году представил схематичный проект летающей подлодки. Его ЛПЛ представляла собой трёхмоторный двухпоплавковый гидросамолет, оборудованный перископом.

В 1936 году в июле его проектом заинтересовались и Ушакову пришел ответ от Научно-исследовательского военного комитета (НИВК) в котором значилось, что его проект интересен и заслуживает безусловной реализации: “….Разработку проекта желательно продолжать, что бы выявить реальность его осуществления путем производства расчетов и лабораторных испытания….”

В 1937 году проект был включен в план отдела НИВКа, нок сожалению после пересмотра от этого проекта отказались. Вся дальнейшая работа над летающей субмариной велась Борисом Ушаковым, на тот момент уже воентехником 1го ранга, в свободное от работы время.

Применение.

Для чего же был предназначен такой диковинный проект? Летающая субмарина была предназначена для уничтожения военно-морской техники противника, как в открытом море так и в акватории морских баз, которые могут быть защищены минными полями. Малая скорость под водой не являлась преградой, так как лодка могла сама находить противника и определять курс корабля еще находясь в воздухе. После этого лодка приводнялась за горизонтом, во избежание ее преждевременного обнаружения и погружалась на линии следования судна.

Американский подводный самолет

И до того, как в радиусе поражения ее ракетами не появлялась цель, субмарина оставалась на глубине в неподвижном положении, не расходуя энергию. Плюсов в этом виде техники открывалось огромное множество, начинаю разведкой и заканчивая непосредственным ведение боя, и конечно же повторный заход на цель. А если использовать ЛПЛ группами при ведении боя, то 3 таких аппарата могли создать заслон для боевых кораблей более чем на 10 километров.

Конструкция.

Конструкция летающей подлодки была очень интересной. Лодка состояла из шести отсеков: в трех из них устанавливались авиамоторы АМ-34, жилой отсек, аккумуляторный и отсек с гребным электромотором. Кабина летчика при погружении заполнялась водой, а летные приборы закрывались в герметичной шахте. Корпус и поплавки субмарины должны были быть изготовлены из дюралюминия, крылья из стали, масляный и топливный резервуары из резины, что бы исключить их повреждения при погружении под воду.

Но к сожалению в 1938 году проект свернули по причине “недостаточной скорости под водой”.

Иностранные проекты.

Конечно же подобные проекты были и в США, но значительно позже в 1945 и в 60-х годах. Именно проект 60-х годов получил развитие и даже был построен образец, который успешно прошел испытания, представлял он собой всего лишь вооруженный беспилотник, который запускали с борта подводной лодки.

А в 1964 году инженером Дональдом Рейдом была построена лодка под названием

9 июля 1964 года этот экземпляр достиг скорости 100 км/ч и выполнил свое первое погружение. Но к сожалению эта конструкция была слишком маломощной для выполнения военных задач.


Американская Cormorant

А в 2008 году США вернулись к разработке летающей субмарины. Сейчас они разрабатывают проект подводного самолета под названием Cormorant который будет летать, а так же плавать как в подводном так и в надводном положении. Планируется, что самолет будет использоваться для скрытной доставки групп специального назначения в прибрежные районы.


Погружения Commander -2
Cormorant 3D

Written by

Варвара

Творчество, работа над современной идеей миропознания и постоянный поиск ответов

Более трети всех потерь подводного флота Третьего Рейха во Второй мировой пришлось на атаки с воздуха. П ри появлении вражеских самолетов лодка должна была срочно погрузиться и переждать опасность на глубине. Если же времени на погружение не оставалось, субмарина была вынуждена принять бой, исход которого, тем не менее, не всегда был предрешен. Примером может служить случай в Атлантике 6 января 1944 года, когда к северу-востоку от Азорских островов субмарина U 270 была атакована весьма необычным охотником за подлодками.

Борьба двух стихий

Во время Второй мировой войны противолодочные самолеты стали для немецких субмарин самым опасным противником. По данным известного немецкого историка Акселя Нистле (Axel Niestlé), за время «Битвы за Атлантику» из 717 боевых немецких субмарин, потерянных в море, в активе авиации ПЛО союзников числятся 245 потопленных подлодок. Считается, что 205 из них были уничтожены самолетами берегового базирования, а остальные 40 отнесены на счет палубной авиации. Гибель от ударов с воздуха занимает первую строчку в списке причин потерь немецкого подводного флота, в то время как корабли ПЛО потопили всего 236 подлодок. Еще 42 подводные лодки были пущены на дно совместными усилиями кораблей и авиации.

Обычная картина в Атлантике во время войны – подлодка, атакованная самолетом. На фото U 118 под огнем «Эвенджеров» с авианосца «Боуг» 12 июня 1943 года - в этот день лодка будет ими потоплена

Тем не менее, охота на немецкие подлодки с воздуха не была легкой и безопасной, и при таких атаках союзники потеряли за войну более 100 самолетов. Немцы, быстро осознав угрозу атак авиации союзников, постоянно совершенствовали защиту своих подводных кораблей, усиливая зенитную артиллерию и устанавливая средства обнаружения и пеленгации самолетов, использовавших радары.

Разумеется, самым надежным для субмарины способом уцелеть при встрече с самолетом было уклонение от боя. При малейшей угрозе атаки с воздуха лодка должна была срочно погрузиться и переждать опасность на глубине. Если же времени на погружение не оставалось, субмарина была вынуждена принять бой, исход которого, тем не менее, не всегда был предрешен. Примером может служить случай в Атлантике 6 января 1944 года, когда к северу-востоку от Азорских островов субмарина U 270 была атакована весьма необычным охотником за подлодками.


Подготовка бомбардировщика Fortress Mk.IIA Берегового командования Королевских ВВС Великобритании к вылету. Обращает на себя внимание запоминающийся поздний вариант камуфляжа, характерный для самолетов Берегового командования - при камуфлированных верхних поверхностях боковые и нижние были окрашены в белый цвет

Летом 1942 года англичане получили по ленд-лизу 64 четырехмоторных «Боинга» B-17. Имея негативный опыт применения «Летающих Крепостей» над Европой в качестве дневного бомбардировщика (20 ранних самолетов B-17C попали в Великобританию еще в 1941 году), они сразу определили новые машины в Береговое командование Королевских ВВС. Следует отметить, что в Великобритании все американские самолеты имели собственные обозначения, и по аналогии с B-17C, именовавшимися Fortress Mk.I, вновь полученные 19 B-17F и 45 B-17E получили наименования Fortress Mk.II и Fortress Mk.IIA соответственно. В январе 1944 года обе британских эскадрильи, вооруженных «Крепостями», 206-я и 220-я, будучи сведенными в 247-ю авиагруппу Берегового командования, базировались на аэродроме Лагенс на острове Терсейра Азорского архипелага.

«Семерка» против «Крепости»

После расформирования действовавшей против союзных конвоев в северной Атлантике немецкой группы «Боркум» (17 единиц) три лодки из её состава должны были образовать одну из малых групп под названием «Боркум-1». В нее вошла и упомянутая выше U 270 обер-лейтенанта цур зее Пауля-Фридриха Отто (Paul-Friedrich Otto). Лодки новой группы должны были занять позицию к северо-западу от Азорских островов, однако именно этот район входил в зону действия 247-й авиагруппы.


Бомбардировщики 247-й авиагруппы Берегового командования рассредоточены по аэродрому на Азорских островах

Днем 6 января в 14:47 для поиска и уничтожения вражеских подлодок в воздух поднялась «Крепость» с бортовым кодом «U» (серийный номер FA705) флайт-лейтенанта Энтони Джеймса Пинхорна (Anthony James Pinhorn) из 206-й эскадрильи. На базу самолет не вернулся. Последнее сообщение от него поступило в 18:16, после чего экипаж на связь больше не выходил. Что же с ним произошло? Об этом могут поведать записи из сохранившегося журнала боевых действий U 270.

Вечером 6 января, в 19:05, с лодки, находившейся в надводном положении, на расстоянии 7000 метров был замечен самолет – станции радиотехнической разведки «Ванце» и «Наксос» не предупредили о его приближении. Была объявлена тревога и приготовлены к бою зенитные орудия. Через несколько минут самолет прошел над лодкой со стороны кормы, но бомб не сбросил, лишь обстреляв ее из хвостовой турели. Выстрелы «Крепости» не причинили вреда U 270, которая вела заградительный огонь из зенитных орудий. Самолет повторил заход, ведя огонь из пулеметов, но бомбы снова не были сброшены. На этот раз прицел был более точным – лодка получила несколько пробоин в рубке, ее зенитчики замешкались, и самолет избежал попаданий.


Офицеры экипажа U 270 на мостике. В белой фуражке - командир лодки обер-лейтенант цур зее Пауль-Фридрих Отто. На горизонте виден 85-метровый монумент памяти немецких моряков, погибших в Первую мировую войну, установленный на побережье в Лабё (окрестности Киля)

Через пять минут «Крепость» в третий раз атаковала «семерку» с кормы. На этот раз «флаки» вовремя открыли заградительный огонь, однако самолет упорно шел прямо на зенитки. Для него это не прошло даром – немцам удалось поразить правую плоскость, и ближний к фюзеляжу двигатель на ней загорелся. При проходе над лодкой самолет сбросил четыре глубинные бомбы, установленные на малую глубину. «Семерка» совершила резкий поворот на левый борт, и бомбы взорвались приблизительно в 30 метрах от носа лодки. Через короткий промежуток времени охваченный пламенем британский самолет упал примерно в 300 метрах от U 270. На месте падения немцы никого не обнаружили – весь экипаж «Крепости» погиб. По этой причине описание боя существует только с немецкой стороны.

Безрассудство против безрассудства?

Экипаж субмарины действовал в непростой ситуации слаженно и мужественно, грамотные действия в управлении лодкой и ведении зенитного огня помогли немцам не только выжить, но и уничтожить опасного противника. Однако, несмотря на то, что победителей не судят, можно сказать, что решение командира не погружаться было ошибочным, так как с момента обнаружения самолета до его первой атаки прошло не менее 6 минут. Лодка вышла победителем из схватки, но получила серьезные повреждения от взрыва бомб и пулеметного огня, была вынуждена прервать поход и вернуться на базу. Так или иначе, экипаж британского самолета выполнил свою главную боевую задачу - пусть и такой дорогой ценой.

Известный немецкий подводник Хайнц Шаффер в своих мемуарах упоминал о тактике, выбранной командиром лодки U 445, на которой он служил, при встрече с самолетом:

«Для повышения готовности к отражению налета самолетов на лодке установили сирену. Она включалась с помощью кнопки, расположенной на мостике рядом с кнопкой звонка. Решение о том, какой из сигналов подать – звонком для объявления срочного погружения по тревоге или сиреной для объявления воздушной тревоги – принимал вахтенный офицер. Правильное или неправильное решение означало выбор между жизнью и смертью.

Когда самолет противника удавалось обнаружить своевременно, то есть на дистанции свыше четырех тысяч метров, надлежало подавать сигнал срочного погружения. Лодка успевала погрузиться на глубину пятьдесят метров прежде, чем самолет сближался с точкой погружения и сбрасывал бомбы. Если же верхняя вахта обнаруживала самолет на меньших расстояниях, попытка погружения почти неминуемо приводила к гибели лодки.

Пилот самолета, не подвергаясь обстрелу, мог снизиться на минимальную высоту и выполнить точное бомбометание по корме лодки, находящейся еще на поверхности или на небольшой глубине. Поэтому при запоздалом обнаружении самолета следовало принимать бой, оставаясь в надводном положении. В зоне господства авиации противника вслед за первым самолетом, обнаружившим лодку, прибывало подкрепление, и атаки следовали одна за другой. По этой причине всегда было велико искушение избежать боя с самолетами срочным погружением даже в рискованных случаях».

Если опираться на такую тактику, то командир U 270 Пауль-Фридрих Отто имел времени больше, чем оставлял себе для безопасного погружения командир U 445, однако решил принять бой. Вероятно, командир U 270 был уверен в себе и своем экипаже, раз пошел на такой риск - возможно, совершенно необоснованный. За победу над британской «Крепостью» лодка заплатила серьезным повреждением всех носовых торпедных аппаратов и носовой цистерны главного балласта. На обратном пути на базу она не давала под дизелями больше 10 узлов и по приходу в Сен-Назер была поставлена в док на двухмесячный ремонт.


Зенитная артиллерия лодки готова к стрельбе. Видны две спарки зенитных 20-мм автоматов и 37-мм орудие

Несколько слов об экипаже погибшего бомбардировщика. Несомненно, что дальние американские бомбардировщики В-17 и В-24, поставлявшиеся британцам, обладали хорошей живучестью, но имели и принципиальные для схваток с «ощетинившимися» зенитками субмаринами недостатки. Во время атаки тяжелый бомбардировщик не обладал достаточной маневренностью и был хорошей мишенью для зенитчиков. Если лодка могла своими маневрами привести самолет под свои орудия, то его встречал шквал свинца – у летчиков должно было хватить мужества держать курс прямо на зенитки. Известен случай, когда лодка, подвергшись нападению сразу двух «Либерейторов», держалась против них два часа. По самолетам вели стрельбу даже из 105-мм палубного орудия, не позволяя им точно зайти на цель и сбросить бомбы. Похоже, что в данном случае летчики попросту не решились лезть прямо на стволы зениток, но экипаж погибшей в бою с U 270 «Крепости» оказался не робкого десятка. Три захода прямо на корму лодки, где в «зимнем саду» были установлены одна или две спарки 20-мм зенитных автоматов и одно 37-мм зенитное орудие, можно назвать подвигом.

Остается вопросом, почему британский экипаж не сбросил бомбы в первом же заходе на подлодку Отто. Возможно, причина была в неисправности бомболюков, но нельзя исклачать и того, что флайт-лейтенант Пинхорн хотел подавить пулеметным огнем зенитные точки противника, после чего беспрепятственно сбрасывать бомбы. Однако огонь пулеметов В-17 оказался безрезультатным – лодка не понесла никаких потерь в экипаже. Вероятно, сброс бомб в первых заходах мог быть более эффективным, но, увы, история не знает сослагательного наклонения.


Наземный персонал 53-й эскадрильи Берегового командования разгружает 250-кг глубинные бомбы перед подвеской их на «Либерейтор». Именно такой самолет стал жертвой зенитчиков U 270 в ночь с 13 на 14 июня 1944 года

В завершение хотелось бы упомянуть, что всего «Крепости» Берегового командования Королевских ВВС отметились 10 победами над немецкими подводными лодками, еще одну субмарину они потопили совместно с самолетами других типов. Уже в апреле того же 1944 года 206-я эскадрилья была перевооружена на более распространенные в Береговом командовании «Либерейторы», имевшие преимущество над «Крепостями» в продолжительности полета и бомбовой нагрузке.

Что касается судьбы U 270, то в своем следующем походе она одержала еще одну победу над самолетом. Это случилось ночью с 13 на 14 июня 1944 года в Бискайском заливе, когда зенитчики лодки сбили «Либерейтор» 53-й эскадрильи Королевских ВВС сквадрон-лидера Джона Уильяма Кармайкла (John William Carmichael). Свою гибель U 270 нашла 13 августа 1944 года. Субмарина была атакована летающей лодкой «Сандерленд» из 461-й австралийской эскадрильи, когда производила эвакуацию людей из Лориана и имела на борту 81 человека с учетом экипажа. Капитан-лейтенант Отто гибель своей лодки пережил, так как ранее отправился в Германию принимать новую «электролодку» U 2525. Согласно данным авторитетного сайта uboat.net, он может быть жив и по сей день.


Картина британского художника Джона Хэмилтона изображает атаку противолодочного «Сандерленда». 461-я австралийская эскадрилья на этих машинах потопила 6 немецких подводных лодок

  1. пилот флайт-лейтенант Anthony James Pinhorn
  2. второй пилот флайнг-офицер Joseph Henry Duncan
  3. штурман флайт-сержант Thomas Eckersley
  4. флайнг-офицер Francis Dennis Roberts
  5. уоррент-офицер Ronald Norman Stares
  6. уоррент-офицер 1-го класса Donald Luther Heard
  7. уоррент-офицер 1-го класса Oliver Ambrose Keddy
  8. сержант Robert Fabian
  9. штурман эскадрильи флайт-лейтенант Ralph Brown (в состав экипажа не входил).

Список источников и литературы:

  1. NARA T1022 (трофейные документы немецкого флота)
  2. Franks N. Search, Find and Kill – Grub Street the Basemenе, 1995
  3. Franks N. Zimmerman E. U-Boat Versus Aircraft: The Dramatic Story Behind U-Boat Claims in Gun Action with Aircraft in World War II – Grub Street, 1998
  4. Ritschel H. Kurzfassung Kriegstagesbuecher Deutscher U-Boote 1939–1945, Band 6. Norderstedt
  5. Busch R., Roll H.-J. German U-boat Commanders of World War II – Annopolis: Naval Institute Press, 1999
  6. Wynn K. U-Boat Operations of the Second World War. Vol.1–2 – Annopolis: Naval Institute Press, 1998
  7. Blair С. Hitler"s U-boat War. The Hunted, 1942–1945 – Random House, 1998
  8. Niestlé A. German U-Boat Losses During World War II: Details of Destruction – Frontline Books, 2014
  9. Шаффер Х. Последний поход U-977 (перев. с нем. В.И. Поленина) – СПб.: «Роза Ветров», 2013
  10. http://uboatarchive.net
  11. http://uboat.net
  12. http://www.ubootarchiv.de
  13. http://ubootwaffe.net