Планирование Мотивация Управление

Скорость охлаждения при закалке. Скорость охлаждения стали на воздухе град с. Определение скорости охлаждения при закалке стали Скорость охлаждения в различных закалочных средах

В отличие от воды охлаждающая способность масла мало зависит от температуры, а скорость охлаждения в масле во много раз меньше, чем в воде. Поэтому, чтобы снизить напряжения и избежать образования закалочных трещин, для закалки легированных сталей с более низкой темплопроводностью, чем у углеродистых сталей, используют минеральное масло. При отсутствии масла применяют горячую воду (80?С).

Таблица 2.3 Скорость охлаждения стали.

Основные способы закалки стали - закалка в одном охладителе, в двух средах, струйчатая, с самоотпуском, ступенчатая и изотермическая.

Закалка в одном охладителе. Деталь, нагретую до температуры закалки, погружают в закалочную жидкость, где она находится до полного охлаждения. Этот способ используют при закалке несложных деталей, изготовленных из углеродистых и легированных сталей.

Детали из углеродистых сталей охлаждают в воде, а детали из легированных сталей- в масле этот способ используют и при механизированной закалке, когда детали автоматически поступают из агрегата в закалочную жидкость.

Высокоуглеродистые стали закаливают с подстуживанием, т.е. нагретую деталь перед охлаждением некоторое время выдерживают на воздухе. Это уменьшает внутренние напряжения в деталях и исключает образование трещин.

Закалка в двух средах (или прерывистая закалка).

Деталь сначала охлаждают в быстроохлаждающей среде-воде, а затем переносят её в медленно охлаждающую среду- масло; применяется при закалке инструмента, изготовленного из высокоуглеродистой стали.

Струйчатая закалка. Детали, нагретые до температуры закалки, охлаждают струей воды. Такой способ применяют для закалки внутренних поверхностей, высадочных штампов, матриц и другого инструмента, у которого рабочая поверхность должна иметь структуру мартенсита. При струйчатой закалке не образуется паровая рубашка, что обеспечивает более глубокую прокаливаемость, чем при простой закалке в воде.

Закалка с самоотпуском. Детали выдерживают в охлаждающей среде не до полного охлаждения, а до определенной стадии, чтобы сохранить в сердцевине детали тепло, необходимое для сомоотпуска.

Ступенчатая закалка. При этом способе закалки нагретые детали охлаждают сначала до температуры несколько выше точки М н (в горячем масле или расплавленной соли), затем после короткой выдержки при этой температуре (до начала промежуточных превращений) охлаждают на воздухе. На второй стадии охлаждения сталь принимает закалку.

Изотермическая закалка. Детали нагревают до заданной температуры и охлаждают в изотермической среде до 220?-350?С, что несколько превышает температуру начала мартенситного превращения. Выдержка деталей в закалочной среде должна быть достаточно для полного превращения аустенита в игольчатый троостит. После этого производится охлаждение на воздухе. При изотермической закалке выдержка значительно больше, чем при ступенчатой закалке.

Изотермическая закалка позволяет устранить большое различие в скоростях охлаждения поверхности и сердцевины деталей, которое является основной причиной образования термических напряжений и закалочных трещин. После изотермической закалки детали приобретают высокую или среднюю твердость, высокую вязкость и хорошую сопротивляемость ударным нагрузкам. Изотермическая закалка в ряде случаев исключают операцию отпуска, что сокращает на 35-40% цикл термической обработки.

Изотермической закалке подвергают детали и инструмент, изготовляемые из легированных сталей марок: 6ХС, 9ХС, 65Г, ХВГ и т.д.

Светлая закалка. При этом способе закалки детали нагревают в нейтральной безокислительной атмосфере или в расплавленных нейтральных солях. При светлой закалке нагрев деталей или инструмента осуществляют в жидких солях, не вызывающих окисления металла, с последующим охлаждением их в расплавленных едких щелочах; в нагревательных печах с применением контролируемой защитной газовой амтосферы, позволяющей регулировать взаимодействие печных газов со сталью при нагреве; в вакуумных (10 -1 -10 -4 мм рт.ст.) закалочных печах. В результате выполнения любого из этих процессов можно получать детали с чистой светло-серого цвета поверхностью.

/ 11.08.2019

Скорость охлаждения стали на воздухе град с. Определение скорости охлаждения при закалке стали

Oхлаждающая способность сред в большой мере определяется тем, изменяется или не изменяется их агрегатное состояние в процессе охлаждения изделий.
В зависимости от температуры кипения охлаждающие среды разделяют на две группы. Первая группа - это среды, агрегатное состояние которых изменяется в период охлаждения. К ней относится вода, водные растворы солей, щелочи, жидкий азот, а также масла, водные растворы эмульсин и т. п., температура кипения которых ниже температуры охлаждаемого изделия. Ко второй группе относятся среды, агрегатное состояние которых не изменяется в процессе охлаждения изделий. Их температура кипения превышает температуру охлаждающихся изделий. Это расплавленные металлы, соли, щелочи и их смеси. К этой же группе следует отнести воздух и гелий, также не меняющие своего агрегатного состояния.
В зависимости от охлаждающей способности сред их делят на три группы:
1. Сильнодействующие охладители: растворы в воде 5% NaOH, 2% K4Fe(CN)6*3H2O1 10-15% NaOH и вода при 15-30° С, в особенности при интенсивном движении, жидкий азот, гелий.
2. Среднедействующие охладители: расплавленные соли, щелочи и металлы, растительные и минеральные масла, мазут, водные растворы силикатов натрия, горячие водные растворы солей и т.п.
3. Слабодействующие охладители: струн сухого воздуха и паровоздушных смесей, вода при 80-90° С, мыльная вода и др.
Охлаждающая способность охладителя зависит от его скрытой теплоты испарения, теплоемкости, теплопроводности и вязкости. На скорость охлаждения в рассматриваемом охладителе влияют количество охладителя и гидродинамический режим его движения.
При погружении изделия с высокой температурой в охлаждающую среду с низкой температурой кипения наблюдаются следующие процессы. В первоначальный момент из-за повышенного парообразования все изделие покрывается паровой пленкой, которая устойчиво держится на поверхности металла. Она - плохой проводник тепла, и поэтому охлаждение на этой стадии, называемой стадией пленочного кипения, замедленно.
По мере понижения температуры изделия количество выделяющегося тепла становится недостаточным поддержания па поверхности сплошной паровой пленки Разрушение паровой пленки приводит к тому, что поверхность изделия начинает соприкасаться с охлаждающей жидкостью. При этом интенсивно образуются пузырьки пара, а интенсивность охлаждения резко возрастает, так как на образование пузырьков пара, быстро отрывающихся от поверхности, расходуется большое количество тепла, и температура металла быстро снижается до температуры кипения охлаждающем среды. Соответствующий период охлаждения носит название пузырькового кипения
При последующем охлаждении парообразование практически не наблюдается, и тепло передается конвекцией от поверхности изделия к охлаждающей среде. Интенсивность теплообмена в третьем периоде невелика, и соответственно малы скорости охлаждения.
Требования к идеальной охлаждающей среде при закалке состоят в том, что она должна обеспечивать охлаждение со скоростями выше критических в некоторой области температур. При более низких температурах скорость охлаждения не должна быть высокой, так как это приводит к возникновению больших остаточных напряжений и короблению изделий. Так, например, при закалке алюминиевых сплавов необходимы высокие скорости охлаждения при температурах 500-300° С для фиксации пересыщенного твердого раствора. Oxлаждение же в интервале температур 200-20° С желательно проводить со значительно меньшей интенсивностью для уменьшения остаточных напряжений.
Охлаждение в воде. Для оценки охлаждающей способности сред по экспериментальным данным строят зависимости коэффициентов теплоотдачи α от температуры поверхности изделия Как уже отмечалось ранее, охлаждающая способность зависит и от условии движения жидкости относительно поверхности изделия.
На рис. 1 приведены значения коэффициентов теплоотдачи для спокойной и циркулирующей воды. Видно, что в зависимости от температуры коэффициенты теплоотдачи изменяются пи кривым с максимумом. При высоких температурах коэффициенты α имеют небольшие значения, что соответствует пленочному режиму кипения. По мере развития пузырькового кипения коэффициенты α резко возрастают, а затем снижаются при таких температурах поверхности при переходе к конвективному теплообмену.

Кривые зависимости коэффициентов теплоотдачи α от температуры поверхности не дают однозначного представления о скоростях охлаждения при различных температурах, так как количество отводимого от изделия тепла пропорционально α и перепаду температур tп-tводы. Скорость охлаждения для «тонких» в термическом смысле тел определяется формулой

где с и ρ - удельная теплоемкость и плотность металла соответственно; V - объем охлаждаемого тела
Из уравнения (I) следует, что для оценки охлаждающей способности среды можно использовать параметр k=α(tп-tводы), который при заданных физических свойствах металла и размерах изделия однозначно определяет скорости охлаждения. На рис. 2 приведены зависимости параметра k от температуры поверхности построенные по данным рис. 1.
Как видно из данных рис. 2. скорости охлаждения изделий в воде в зависимости от температуры охлаждаемой поверхности также изменяются по кривой с максимумом. При температуре воды 20°С этот максимум находится в области температур поверхности 200-300°С. С повышением температуры воды скорости охлаждения снижаются, а максимум смещается в область более низких температур поверхности. Следует отметить, что в области температур поверхности 100-200°С скорости охлаждения при применении воды с повышенной температурой больше, чем для воды с температурой 20°С. Повышение скоростей охлаждения в области низких температур приводит к увеличению остаточных напряжении, и поэтому перегрев воды в закалочных баках ограничивается температурами 25-45° С. Циркуляция воды повышает скорости охлаждения в области высоких температур.

Охлаждение в водных растворах и эмульсиях. Исследования показали, что даже незначительное количество примесей существенно изменяет охлаждающую способность воды. Установлено, что это связано с влиянием примесей на устойчивость паровой пленки на поверхности охлаждаемого изделия. При этом растворимые примеси уменьшают, а нерастворимые, наоборот, увеличивают стабильность паровой пленки. Это свойство воды было использовано для разработки закалочных сред с высокой и пониженной охлаждающей способностью.
Повышение охлаждающей способности воды достигается растворением в ней кислот, щелочей и солей. Такие хорошо растворимые соединения, как KCl, NaCl, CaCl2, Na2CO3, К2CO3, Na2SO4, H2SO4, NaOH, КОН, снижают устойчивость паровой пленки и повышают температуру перехода от пленочного режима кипения к пузырьковому.
Наоборот, присадка нерастворимых и слаборастворимых веществ, образующих в воде эмульсию (масла, жиры, нефтепродукты, мыла и др.), увеличивает стабильность паровой пленки и понижает температуру смены режимов кипения. Охлаждающая способность воды с присадкой этих веществ в области высоких температур существенно понижается.
В практике термической обработки широкое применение нашли водные растворы 5-15% NaCl Они обладают большей по сравнению с водой охлаждающей способностью при повышенных температурах, а при температурах ниже 200-250° С охлаждают примерно с тон же скоростью, что и вода.
Меньшее применение нашли растворы щелочей, которые по охлаждающей способности аналогичны растворам NaCl Растворы кислот не используют в качестве закалочных сред из-за их агрессивности и выделения при закалке вредных паров. Суспензии и эмульсии характеризуются пониженной скоростью охлаждения при высоких и средних температурах, а при низких - охлаждают так же, как чистая вода.
На рис. 3 приведены значения коэффициентов теплоотдачи в зависимости от температуры поверхности для различных растворов и эмульсий позволяющие по лучить количественные характеристики их охлаждающей способности.


В последнее время в качестве закалочных сред начинают применять водные растворы полимерок, обеспечивающие пониженную скорость охлаждения при закалке и соответственно меньшее коробление. В зарубежной практике используют водные растворы полиалкиленгликоля, а в нашей стране водное растворы полиэтиленгликоля. При температурах выше 70-77° С эти вещества нерастворимы в воде, и поэтому при закалочном охлаждении молекулы полимере в покрывают поверхность изделия тонкой пленкой, которая замедляет охлаждение. При достаточно низких температурах полимерная пленка переходит в водный раствор и затормаживающее действие пленки устраняется Поэтому при закалке в водных растворах полимеров нет того колоссального различия в скоростях охлаждения в интервале высоких, средних и низких температур, которое свойственно воде.
Вязкость раствора, в значительной мере определяющая его охлаждающую способность, зависит от концентрации полимера. Так, изменение концентрации полиэтиленгликоля от 30 до 70% увеличивает кинематическую вязкость раствора почти в 30 раз, что позволяет осуществлять резкую закалку в растворах малой концентрации и закалку с умеренной скоростью охлаждения в растворах высокой концентрации (рис. 4).


При закалке алюминиевых сплавов в растворах полиэтиленгликоля с концентрацией выше 50% коробление может быть уменьшено на 85 95%. При этом существенно не снижаются механические свойства и коррозионная стойкость сплавов Наиболее целесообразно использовать эти среды в условиях машиностроительных заводов, где часто возникает необходимость проведения повторных закалок.
Охлаждение в маслах. В настоящее время для закалки применяют исключительно дистиллятные минеральные масла. Температуры кипения масел на 150-300° С выше, чем воды. Максимально допустимую температуру перегрева масел выбирают на 25-30° С ниже температуры вспышки. По сравнению с водой масла характеризуются значительно более низкой охлаждающей способностью особенно на стадии конвективного теплообмена. Скорости охлаждения в масле при повышенных температурах в 5-8 раз меньше, чем при охлаждении в воде.
Охлаждающая способность масел слабо зависит от их циркуляции и температуры, в тех пределах, которые встречаются на практике (25-65° С).
Для проведения закалочных операций в практике термообработки применяют масла с пониженной, нормальной, повышенной и высокой вязкостью. Чаще всего используют масла марок 20 и 20В, имеющие нормальную вязкость.
Масла пониженной вязкости обладают более высокой охлаждающей способностью по сравнению с маслами повышенной и высокой вязкости и имеют низкую температуру вспышки. Масла повышенной и высоком вязкости имеют высокую температуру вспышки, что позволяет подогревать их до 160-200° С для снижения вязкости. Их используют для изотермической и ступенчатой закалки.
Недостаток минеральных масел - их старение, приводящее к загустеванию и потере охлаждающей способности. Состаренное масло подвергают регенерации, состоящей из отстаивания, фильтрации от загрязнений и добавки некоторого количества свежего масла.
Закалка в расплавленном свинце, солях и щелочах. Для ступенчатой и изотермической закалки используют охлаждающие среды, которые при проведении термообработки не меняют своего агрегатного состояния К ним относятся расплавленные свинец, азотнокислые соли и щелочи.
Расплавленный свинец удовлетворяет предъявляемым с теплотехнической точки зрения требованиям, но дефицитен, а испарения его вредны для обслуживающего персонала. Поэтому свинец заменяют другими средами.
Расплавленные соли и щелочи и их смеси имею ряд преимуществ перед свинцом. Во-первых, они легко отмываются с поверхности изделий. Поверхность после закалки в щелочах не окислена, что позволяет обожгись без операции очистки деталей после термической обработки. Во-вторых, использование соляных и щелочных ванн позволяет осуществить внутренний электрический обогрев, легко автоматизировать регулирование температуры и просто решать проблемы перемешивания расплава. Исследования показывают, что охлаждающая способность соляных и щелочных сред несколько нише, чем у свинца. Однако при работе со щелочными средами следует принимать меры предосторожности против ожогов от брызг.
Составы смесей, рекомендуемых в качестве закалочных сред, приведены в табл. 3.

Охлаждающая способность расплавленных сред зависит от вязкости: чем ниже вязкость, тем выше охлаждающая способность. С увеличением температуры расплава и соответствующим уменьшением вязкости коэффициенты теплоотдачи возрастают, достигают максимума, а затем падают (рис. 5).
Добавки воды сильно влияют на охлаждающую способность солей и щелочей. Вода повышает жидко-текучесть и увеличивает охлаждающую способность расплавленной среды. С этой целью в расплавы солей вводят 2-10%, а в расплавы щелочей 8-15% воды.


После закалки в расплавам щелочей изделия необходимо тщательно промывать и пассивировать для предотвращения коррозии
Охлаждение на воздухе. При охлаждении на воздухе тепло передается излучением и конвекцией и коэффициент теплоотдачи α складывается из конвективной αк и лучистой αл составляющих.
При охлаждении в спокойной воздушной среде для определения αк используют следующие формулы:

где Δr=tп-tвозд - разность средней температуры поверхности изделия и температуры воздуха; l - характерный размер, м, принимается для шара и горизонтального цилиндра (трубы) равным их диаметру; для вертикального цилиндра и вертикальной пластины - высоте охлаждаемого участка, для горизонтальной плиты - ее наименьшей длине.
Для плиты, обращенной поверхностью теплообмена вверх, значения αк увеличиваются на 30%, а для плиты, обращенной поверхностью теплообмена вниз, уменьшаются на 30% по сравнению с вычисленными по формулам (2) и (3).
Значения коэффициентов В, А1, и А2 определяются в зависимости от средней температуры t=1/2(tп+tвозд) и приведены в табл. 4.

Интенсивность конвективного теплообмене при вынужденном движении воздуха или газа зависит от скорости движения газа, его физических свойств и геометрии нагреваемых или охлаждаемых изделий.
Для вынужденного движения поверхности αк определяется по формулам Юргеса:
а) при скорости движения воздуха w0≤4,65 м/c:
для полированной поверхности

при прокатанной поверхности

для шероховатой поверхности

б) при скорости движения газов w0≥4,65 м/с:
для полированной поверхности

для прокатанной поверхности

для шероховатой поверхности

Здесь W0 - приведенная (0°С; 0,1 мПа) скорость движения воздуха. Если известна скорость движения w при температуре t, то

При проведении термической обработки часто требуется охлаждение с регламентированной скоростью. Поэтому возникает необходимость расчета процессов охлаждения, которое может проводиться в любой из описанных выше сред.
Расчет процессов охлаждения в различных условиях в принципе ничем не отличается от расчета процессов нагрева. Просто в формулах, приведенных в литературе по теплопередаче, вместо температуры печи t1, необходимо подставить значение температуры охлаждающей среди Для расчета охлаждения массивных тел, например, можно использовать графики Д. В Будрина и т.п.

Термическая обработка сталей - одна из самых важных операций в машиностроении, от правильного проведения которой зависит качество выпускаемой продукции. Закалка и отпуск сталей являются одними из разнообразных видов термообработки металлов.

Тепловое воздействие на металл меняет его свойства и структуру. Это позволяет повысить механические свойства материала, долговечность и надежность изделий, а также уменьшить размеры и массу механизмов и машин. Кроме того, благодаря термообработке, для изготовления различных деталей можно применять более дешевые сплавы.

Как закалялась сталь

Термообработка стали заключается в тепловом воздействии на металл по определенным режимам ля изменения его структуры и свойств.

К операциям термообработки относятся:

  • отжиг;
  • нормализация;
  • старение;
  • закалка стали и отпуск стали (и пр.).

Термообработка стали: закалка отпуск - зависит от следующих факторов:

  • температуры нагрева;
  • времени (скорости) нагрева;
  • продолжительности выдержки при заданной температуре;
  • скорости охлаждения.

Закалка

Закалка стали - это процесс термообработки, суть которого заключается в нагреве стали до температуры выше критической с последующим быстрым охлаждением. В результате этой операции повышаются твердость и прочность стали, а пластичность снижается.

При нагреве и охлаждении сталей происходит перестройка атомной решетки. Критические значения температур у разных марок сталей неодинаковы: они зависят от содержания углерода и легирующих примесей, а также от скорости нагрева и охлаждения.

После закалки сталь становится хрупкой и твердой. Поверхностный слой изделий при нагреве в термических печах покрывается окалиной и обезуглероживается тем более, чем выше температура нагрева и время выдержки в печи. Если детали имеют малый припуск для дальнейшей обработки, то брак этот является неисправимым. Режимы закалки закалки стали зависят от ее состава и технических требований к изделию.

Охлаждать детали при закалке следует быстро, чтобы аустенит не успел превратиться в структуры промежуточные (сорбит или троостит). Необходимая скорость охлаждения обеспечивается посредством выбора охлаждающей среды. При этом чрезмерно быстрое охлаждение приводит к появлению трещин или короблению изделия. Чтобы этого избежать, в интервале температур от 300 до 200 градусов скорость охлаждения надо замедлять, применяя для этого комбинированные методы закалки. Большое значение для уменьшения коробления изделия имеет способ погружения детали в охлаждающую среду.

Нагрев металла

Все способы закалки стали состоят из:

  • нагрева стали;
  • последующей выдержки для достижения сквозного прогрева изделия и завершения структурных превращений;
  • охлаждения с определенной скоростью.

Изделия из углеродистой стали нагревают в камерных печах. Предварительный подогрев в этом случае не требуется, так как эти марки сталей не подвергаются растрескиванию или короблению.

Сложные изделия (например, инструмент, имеющий выступающие тонкие грани или резкие переходы) предварительно подогревают:

  • в соляных ваннах путем двух-или трехкратного погружения на 2 – 4 секунды;
  • в отдельных печах до температуры 400 – 500 градусов по Цельсию.

Нагрев всех частей изделия должен протекать равномерно. Если это невозможно обеспечить за один прием (крупные поковки), то делаются две выдержки для сквозного прогрева.

Если в печь помещается только одна деталь, то время нагрева сокращается. Так, например, одна дисковая фреза толщиной 24 мм нагревается в течение 13 минут, а десять таких изделий – в течение 18 минут.

Защита изделия от окалины и обезуглероживания

Для изделий, поверхности которых после термообработки не шлифуются, выгорание углерода и образование окалины недопустимо. Защищают поверхности от подобного брака применением, подаваемых в полость электропечи. Разумеется, такой прием возможен только в специальных герметизированных печах. Источником подаваемого в зону нагрева газа служат генераторы защитного газа. Они могут работать на метане, аммиаке и других углеводородных газах.

Если защитная атмосфера отсутствует, то изделия перед нагревом упаковывают в тару и засыпают отработанным карбюризатором, стружкой (термисту следует знать, что древесный уголь не защищает инструментальные стали от обезуглероживания). Чтобы в тару не попадал воздух, ее обмазывают глиной.

Соляные ванны при нагреве не дают металлу окисляться, но от обезуглероживания не защищают. Поэтому на производстве их раскисляют не менее двух раз в смену бурой, кровяной солью или борной кислотой. Соляные ванны, работающие на температурах 760 – 1000 градусов Цельсия, весьма эффективно раскисляются древесным углем. Для этого стакан, имеющий множество отверстий по всей поверхности, наполняют просушенным углем древесным, закрывают крышкой (чтобы уголь не всплыл) и после подогрева опускают на дно соляной ванны. Сначала появляется значительное количество языков пламени, затем оно уменьшается. Если в течение смены таким способом трижды раскислять ванну, то нагреваемые изделия будут полностью защищены от обезуглероживания.

Степень раскисления соляных ванн проверяется очень просто: обычное лезвие, нагретое в ванне в течение 5 – 7 минут в качественно раскисленной ванне и закаленное в воде, будет ломаться, а не гнуться.

Охлаждающие жидкости

Основной охлаждающей жидкостью для стали является вода. Если в воду добавить небольшое количество солей или мыла, то скорость охлаждения изменится. Поэтому ни в коем случае нельзя использовать закалочный бак для посторонних целей (например, для мытья рук). Для достижения одинаковой твердости на закаленной поверхности необходимо поддерживать температуру охлаждающей жидкости 20 – 30 градусов. Не следует часто менять воду в баке. Совершенно недопустимо охлаждать изделие в проточной воде.

Недостатком водяной закалки является образование трещин и коробления. Поэтому таким методом закаливают изделия только несложной формы или цементированные.

  • При закалке изделий сложной конфигурации из конструкционной стали применяется пятидесятипроцентный раствор соды каустической (холодный или подогретый до 50 – 60 градусов). Детали, нагретые в соляной ванне и закаленные в этом растворе, получаются светлыми. Нельзя допускать, чтобы температура раствора превышала 60 градусов.

Режимы

Пары, образующиеся при закалке в растворе каустика, вредны для человека, поэтому закалочную ванну обязательно оборудуют вытяжной вентиляцией.

  • Закалку легированной стали производят в минеральных маслах. Кстати, тонкие изделия из углеродистой стали также проводят в масле. Главное преимущество масляных ванн заключается в том, что скорость охлаждения не зависит от температуры масла: при температуре 20 градусов и 150 градусов изделие будет охлаждаться с одинаковой скоростью.

Следует остерегаться попадания воды в масляную ванну, так как это может привести к растрескиванию изделия. Что интересно: в масле, разогретом до температуры выше 100 градусов, попадание воды не приводит к появлению трещин в металле.

Недостатком масляной ванны является:

  1. выделение вредных газов при закалке;
  2. образование налета на изделии;
  3. склонность масла к воспламеняемости;
  4. постепенное ухудшение закаливающей способности.
  • Стали с устойчивым аустенитом (например, Х12М) можно охлаждать воздухом, который подают компрессором или вентилятором. При этом важно не допускать попадания в воздухопровод воды: это может привести к образованию трещин на изделии.
  • Ступенчатая закалка выполняется в горячем масле, расплавленных щелочах, солях легкоплавких.
  • Прерывистая закалка сталей в двух охлаждающих средах применяется для обработки сложных деталей, изготовленных из углеродистых сталей. Сначала их охлаждают в воде до температуры 250 – 200 градусов, а затем в масле. Изделие выдерживается в воде не более 1 – 2 секунд на каждые 5 – 6 мм толщины. Если время выдержки в воде увеличить, то на изделии неизбежно появятся трещины. Перенос детали из воды в масло следует выполнять очень быстро.

В зависимости от требуемой температуры отпуск производится:

  • в масляных ваннах;
  • в селитровых ваннах;
  • в печах с принудительной воздушной циркуляцией;
  • в ваннах с расплавленной щелочью.

Температура отпуска зависит от марки стали и требуемой твердости изделия, например, инструмент, для которого необходима твердость HRC 59 – 60, следует отпускать при температуре 150 – 200 градусов. В этом случае внутренние напряжения уменьшаются, а твердость снижается незначительно.

Быстрорежущая сталь отпускается при температуре 540 – 580 градусов. Такой отпуск называют вторичным отвердением, так как в результате твердость изделия повышается.

Изделия можно отпускать на цвет побежалости, нагревая их на электроплитах, в печах, даже в горячем песке. Окисная пленка, которая появляется в результате нагрева, приобретает различные цвета побежалости, зависящие от температуры. Прежде чем приступать к отпуску на один из цветов побежалости, надо очистить поверхность изделия от окалины, нагара масла и т. д.

Обычно после отпуска металл охлаждают на воздухе. Но хромоникелевые стали следует охлаждать в воде или масле, так как медленное охлаждение этих марок приводит к отпускной хрупкости.

В результате закалки сталь получает мартенситную структуру, весьма твердую (свыше 6000 НВ) и хрупкую. Мартенсит представляет собой пересыщенный твердый раствор углерода в α-Fe. Превращение аустенита в мартенсит является бездиффузионным процессом: при быстром охлаждении (со скоростью более 150 0 С/с) кристаллическая гранецентрированная решетка аустенита превращается в решетку α-Fe. Диффузия атомов углерода при этом не успевает произойти, и они сохраняют прежние положения. В результате этого создается напряженное состояние кристаллической решетки, что приводит к высокой твердости и хрупкости закаленной стали.

Для уменьшения хрупкости после закалки всегда проводят отпуск, в результате которого уменьшаются внутренние напряжения и сталь приобретает необходимые физико-механические свойства.

Отпуск закаленной стали осуществляют путем нагрева до температуры ниже критических точек Ас 1 , выдержки при этой температуре и последующего медленного или быстрого охлаждения. Быстрое охлаждение в воде рекомендуется при отпуске легированных сталей во избежание отпускной хрупкости. Углеродистые стали охлаждают на воздухе.

Условно различают низкий, средний и высокий отпуск. Низкий отпуск производится при нагреве до 200 __ 300 0 С. Получаемая при этом структура – отпущенный мартенсит, твердость свыше 5000 НВ. Низкому отпуску подвергаются режущие инструменты, калибры и т.п.

Средний отпуск осуществляется при нагреве от 300 до 500 0 С. В результате среднего отпуска сталь приобретает структуру троостита отпуска, для которого свойственна твердость около 4 000 НВ. Отпуск на троостит применяется при обработке пружин, рессор, штампов, ударного инструмента и т.п. При промежуточном нагреве получаются структуры троосто-мартенсита или троосто-сорбита.

Высокий отпуск производится при нагреве 550-650 0 С. Получаемая при этом структура – сорбит отпуска, твердость около 3 000 НВ. Высокому отпуску подвергаются коленчатые валы, полуоси, шатуны, шатунные болты и многие другие детали машин.

Таким образом, по мере повышения температуры отпуска снижаются характеристики прочности, повышаются характеристики пластичности и ударная вязкость. Для различных марок стали величины этих характеристик будут разные, но общая тенденция их изменения остается одинаковой. Наилучшее сочетание свойств прочности и пластичности имеет сталь после закалки и высокого отпуска (структура сорбита).

Порядок выполнения работы

Работа выполняется группой в 10-12 человек. Каждые два студента производят нормализацию, закалку, низкий и высокий отпуск образца стали.

    Определить температуру закалки стали, пользуясь для этого нижней частью диаграммы железо-цементит. Для среднеуглеродистых, доэвтектоидных сталей (марок 40, 45, 50) нормальной температурой закалки является температура на 30-50 0 С выше линии GS, т.е. Ас 3 + (30-50) 0 С.

    Определить время нагрева и выдержки образцов, пользуясь данными, приведенными в табл. 5.2.

    Определить скорость охлаждения в различных средах. Для этого взять наиболее распространенные закалочные среды, охлаждающие с различной скоростью: воду (скорость охлаждения 600 0 С/с) и масло (скорость охлаждения 150 0 С/с).

    Образцы поместить в печь, нагретую до температуры закалки для стали данной марки, и выдержать в печи требуемое время. При нагревании до температуры закалки образцов из стали 40, исходная феррито-перлитная структура превратится в структуру аустенита.

    Произвести закалку образца в воде. Для этого необходимо: а) быстро перенести щипцами образец в закалочную ванну с водой во избежание охлаждения образца ниже температуры Ас 3 и получения неполной закалки; б) энергично перемещать образец в ванне с целью устранения образующейся паровой рубашки, которая замедляет процесс охлаждения.

    Образцы, охлажденные в масле, обтереть тряпкой, оба торца зачистить на шлифовальной бумаге. Определить твердость закаленных образцов по НRС.

    Определить температуру отпуска стали. Поскольку при отпуске происходит изменение структуры и свойств стали и тем в большей степени, чем выше температура отпуска, следует применить различную температуру отпуска от низкой (200 0 С) до высокой (600 0 С).

    Определить время выдержки при температуре отпуска из расчета 2-3 мин на 1 мм толщины образца и записать в соответствующую графу протокола.

    Определить условия охлаждения. Обычно охлаждение после отпуска производится на воздухе, но можно охлаждать и в воде, и в масле, так как скорость охлаждения не влияет на твердость и структуру стали. Для ускорения работы образцы после отпуска следует охлаждать в воде.

    Измерить твердость образцов после каждого вида отпуска, записывая результаты измерений в рабочий журнал и устанавливая по ним примерное значение предела прочности по зависимости

12.В отчете привести график и все необходимые данные режима термической обработки, дать наименование полученной микроструктуры и объяснить влияние термообработки на механические свойства стали.

ЛАБОРАТОРНАЯ РАБОТА № 5

ЗАКАЛКА СТАЛИ В РАЗЛИЧНЫХ СРЕДАХ

Цель работы: оценить действие различных охлаждающих сред на превращение аустенита при закалке путем контроля твердости.

Приборы, материалы, инструменты:

1) электрическая муфельная печь МП-2У;

2) образцы из стали 50;

3) твердомер Роквелла;

4) охлаждающие баки с закалочными средами.

Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения изделия и не должно вызывать закалочных дефектов – трещин, короблений, остаточных напряжений в поверхностных слоях и т.д. При закалке для переохлаждения аустенита до температуры мартенситного превращения требуется быстрое охлаждение, но не на всем интервале температур, в котором аустенит менее всего устойчив. Выше 650ºС скорость превращения аустенита мала, и поэтому сталь при закалке можно охлаждать в данном интервале медленно, но не настолько, чтобы началось образование Ф+П. Интервал 650 ºС-400 ºС должен быть пройден очень быстро.

В момент погружения изделия в закалочную среду вокруг него образуется пленка перегретого пара; охлаждение происходит через слой этой паровой рубашки, т.е. медленно (пленочное кипение). При определенной температуре паровая рубашка разрывается, жидкость начинает кипеть на поверхности детали, охлаждение происходит быстро (пузырьковое кипение). Третий этап (конвективный теплообмен) начинается, когда жидкость кипеть уже не может. Закалочная среда тем эффективнее, чем шире интервал второго этапа.

Если интенсивность охлаждения воды в середине второго этапа принять за единицу, то для минерального масла она будет равна 0,3; для 10 % раствора NaCl в воде – 3; для 10 %- раствора NaОН в воде – 2,5.

При закалке углеродистой и некоторых низколегированных сталей в качестве охлаждающей среды применяют воду и водные растворы (8-12%-е) NaCl и NaОН. Вода, как охлаждающая среда, имеет недостаток. Высокая скорость охлаждения в области температур мартенситного превращения приводит к образованию закалочных дефектов. Растворы NaCl и NaОН обладают наиболее равномерной охлаждающей способностью; кроме того, щелочная среда не вызывает последующей коррозии остальных деталей. Масло, как закалочная среда, имеет преимущество: небольшую скорость охлаждения в интервале мартенситного превращения, что уменьшает возникновение закалочных дефектов. Недостатком является повышенная воспламеняемость.

Структура закаленной стали – мартенсит – получается при резком охлаждении аустенита при закалке. Рассматривая диаграммы изотермического превращения углеродистой и легированной стали (рис. 21), нетрудно убедиться, что линия начала превращения у легированной стали смещена вправо от оси ординат по сравнению с углеродистой сталью. Следовательно, устойчивость аустенита легированной стали, характеризующаяся расстоянием от оси ординат до точки К перегиба линии начала перлитного и промежуточного превращения, значительно выше, чем у углеродистой стали.

Если на диаграмме изотермического превращения изобразить скорость охлаждения при закалке в различных средах, они будут иметь вид кривых , . Чем выше скорость охлаждения, тем круче кривая. По диаграмме, имеющей кривые скоростей охлаждения, можно судить о структурных превращениях, протекающих в детали из данной стали при закалке в определенной охлаждающей среде.

Пусть – скорость охлаждения в воде, – в масле, – на спокойном воздухе.

Рассмотрим превращение в стали при закалке. Углеродистая сталь имеет малую устойчивость аустенита. При охлаждении ее в воде кривая скорости охлаждения не пересекает линию начала мартенситного превращения. Аустенитная структура сохраняется полностью до начала мартенситного превращения и структура после окончания охлаждения – мартенсит закалки. При охлаждении ее в масле оказывается, что кривая скорости охлаждения пересекает линию начала превращения в области трооститного превращения, но не уходит за линию конца превращения, а в дальнейшем пересекает линии начала и конца мартенситного превращения. Следовательно, часть переохлажденного аустенита переходит в троостит закалки, а часть сохраняется до области мартенситного превращения, и структура стали после окончания охлаждения состоит из троостита закалки и мартенсита закалки. Это приводит к понижению твердости, и деталь идет в брак.

Если же мы будем охлаждать деталь из этой стали на воздухе, то окажется, что кривая скорости охлаждения пересекает линии начала и конца превращения в области перлитного и сорбитного превращения; структура стали после охлаждения состоит из перлита и сорбита закалки.

Таким образом, для получения структуры мартенсита закалки мы должны так подобрать охлаждающую среду, чтобы кривая скорости охлаждения не пересекла линии перлитного превращения.

Рис. 21. Диаграмма изотермического превращения аустенита
для стали с содержанием 0,8 % углерода.

Предельно низкая скорость охлаждения, кривая которой не пересекает линии перлитного превращения, а касается ее в точке К , называется критической скоростью закалки. Для каждой стали критическая скорость закалки есть величина постоянная, но отличная от критической скорости закалки другой стали. Зависит она от наименьшей устойчивости, т.е. от расстояния от оси ординат до точки К в месте изгиба кривой начала превращения. Критическая скорость закалки – наименьшая скорость охлаждения, достаточная для переохлаждения аустенита до начала мартенситного превращения, и, следовательно, для получения структуры мартенсита закалки. При выборе охлаждающей среды для закалки определенной марки стали подбирают среду, дающую скорость охлаждения несколько выше критической при осуществления закалки стали на полную глубину, определяемую прокаливаемостью стали. Излишне высокая скорость охлаждения нежелательна, так как она сопровождается образованием высоких остаточных напряжений и приводит к короблению детали и даже к образованию трещин.

Если выбранная скорость ниже критической, то это вызывает понижение твердости из-за образования троосто-мартенситной структуры, что нежелательно.

Порядок выполнения работы:

1. Произвести закалку образцов с температуры 820 0 Св воду, масло, 10 % раствор в воде NaCl и на воздухе.

2. Определить твердость образцов после каждого вида обработки.

3. Объяснить полученные результаты, заполнить табл. 5.

4. Составить отчет.

Таблица 5

Таблица зависимости свойств стали от охлаждающей среды

Вопросы для самопроверки:

1. Какие среды применяют для закалки углеродистых, легированных сталей?

2. Как влияет охлаждающая среда на твердость стали?

3. Какая структура получается в результате закалки углеродистой стали в воде, масле, расплавах солей, на воздухе?

Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

Закалка (мартенситное превращение) - основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают. Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.
В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.
Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.

Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига;
в) после закалки; г) после отпуска. ×500.

Режимы закалки

  • Закалка в одной среде

Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении - детали сложной формы могут покоробиться или даже получить трещины.

  • Ступенчатая закалка

При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных - из легированных сталей, для которых скорость закалки не столь критична.

  • Закалка в двух средах

Начинается быстрым охлаждением в воде и завершается медленным - в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.

  • Поверхностная закалка (лазерная, токами высокой частоты)

Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)

Отпуск

Закаленная сталь становится чрезмерно хрупкой, что является главным недостатком этого метода упрочнения. Для нормализации конструкционных свойств производят отпуск - нагрев до температуры ниже фазового превращения, выдержку и медленное охлаждение. При отпуске происходит частичная «отмена» закалки, сталь становится чуть менее твердой, но более пластичной. Различают низкий (150-200С, для инструмента и деталей с повышенной износостойкостью), средний (300-400С, для рессор) и высокий (550-650, для высоконагруженных деталей) отпуск.

Таблица температур закалки и отпуска сталей

№ п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
1 2 3 4 5 6 7 8 9 10
1 Сталь 20 57…63 790…820 160…200 920…950 Вода
2 Сталь 35 30…34 830…840 490…510 Вода
33…35 450…500
42…48 180…200 860…880
3 Сталь 45 20…25 820…840 550…600 Вода
20…28 550…580
24…28 500…550
30…34 490…520
42…51 180…220 Сеч. до 40 мм
49…57 200…220 840…880
780…820 С печью
4 Сталь 65Г 28…33 790…810 550…580 Масло Сеч. до 60 мм
43…49 340…380 Сеч. до 10 мм (пружины)
55…61 160…220 Сеч. до 30 мм
5 Сталь 20Х 57…63 800…820 160…200 900…950 Масло
59…63 180…220 850…870 900…950 Водный раствор 0,2…0,7% поли-акриланида
«- 840…860
6 Сталь 40Х 24…28 840…860 500…550 Масло
30…34 490…520
47…51 180…200 Сеч. до 30 мм
47…57 860…900 Водный раствор 0,2…0,7% поли-акриланида
48…54 Азотирование
840…860
7 Сталь 50Х 25…32 830…850 550…620 Масло Сеч. до 100 мм
49…55 180…200 Сеч. до 45 мм
53…59 180…200 880…900 Водный раствор 0,2…0,7% поли-акриланида
860…880
8 Сталь 12ХН3А 57…63 780…800 180…200 900…920 Масло
50…63 180…200 850…870 Водный раствор 0,2…0,7% поли-акриланида
840…870 С печью до 550…650
9 Сталь 38Х2МЮА 23…29 930…950 650…670 Масло Сеч. до 100 мм
650…670 Нормализация 930…970
HV > 670 Азотирование
10 Сталь 7ХГ2ВМ 770…790 С печью до 550
28…30 860…875 560…580 Воздух Сеч. до 200 мм
58…61 210…230 Сеч. до 120 мм
11 Сталь 60С2А 840…860 С печью
44…51 850…870 420…480 Масло Сеч. до 20 мм
12 Сталь 35ХГС 880…900 С печью до 500…650
50…53 870…890 180…200 Масло
13 Сталь 50ХФА 25…33 850…880 580…600 Масло
51…56 850…870 180…200 Сеч. до 30 мм
53…59 180…220 880…940 Водный раствор 0,2…0,7% поли-акриланида
14 Сталь ШХ15 790…810 С печью до 600
59…63 840…850 160…180 Масло Сеч. до 20 мм
51…57 300…400
42…51 400…500
15 Сталь У7, У7А НВ 740…760 С печью до 600
44…51 800…830 300…400 Вода до 250, масло Сеч. до 18 мм
55…61 200…300
61…64 160…200
61…64 160…200 Масло Сеч. до 5 мм
16 Сталь У8, У8А НВ 740…760 С печью до 600
37…46 790…820 400…500 Вода до 250, масло Сеч. до 60 мм
61…65 160…200
61…65 160…200 Масло Сеч. до 8 мм
61…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
17 Сталь У10, У10А НВ 750…770
40…48 770…800 400…500 Вода до 250, масло Сеч. до 60 мм
50…63 160…200
61…65 160…200 Масло Сеч. до 8 мм
59…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
18 Сталь 9ХС 790…810 С печью до 600
45…55 860…880 450…500 Масло Сеч. до 30 мм
40…48 500…600
59…63 180…240 Сеч. до 40 мм
19 Сталь ХВГ 780…800 С печью до 650
59…63 820…850 180…220 Масло Сеч. до 60 мм
36…47 500…600
55…57 280…340 Сеч. до 70 мм
20 Сталь Х12М 61…63 1000…1030 190…210 Масло Сеч. до 140 мм
57…58 320…350
21 Сталь Р6М5 18…23 800…830 С печью до 600
64…66 1210…1230 560…570 3-х кратн. Масло, воздух В масле до 300…450 град., воздух до 20
26…29 780…800 Выдержка 2…3 часа, воздух
22 Сталь Р18 18…26 860…880 С печью до 600
62…65 1260…1280 560…570 3-х кратн. Масло, воздух В масле до 150…200 град., воздух до 20
23 Пружин. сталь Кл. II 250…320 После холодной навивки пружин 30-ть минут
24 Сталь 5ХНМ, 5ХНВ >= 57 840…860 460…520 Масло Сеч. до 100 мм
42…46 Сеч. 100..200 мм
39…43 Сеч. 200..300 мм
37…42 Сеч. 300..500 мм
НV >= 450 Азотирование. Сеч. св. 70 мм
25 Сталь 30ХГСА 19…27 890…910 660…680 Масло
27…34 580…600
34…39 500…540
«- 770…790 С печью до 650
26 Сталь 12Х18Н9Т 1100…1150 Вода
27 Сталь 40ХН2МА, 40ХН2ВА 30…36 840…860 600…650 Масло
34…39 550…600
28 Сталь ЭИ961Ш 27…33 1000…1010 660…690 Масло 13Х11Н2В2НФ
34…39 560…590 При t>6 мм вода
29 Сталь 20Х13 27…35 1050 550…600 Воздух
43,5…50,5 200
30 Сталь 40Х13 49,5…56 1000…1050 200…300 Масло

Термообработка цветных металлов

Сплавы на основе других металлов не отвечают на закалку столь же ярко, как стали, но их твердость тоже можно повысить термообработкой. Обычно используют сочетание закалки и предварительного отжига (нагрева выше точки фазового превращения с медленным охлаждением).

  • Бронзы (сплавы меди) подвергают отжигу при температуре чуть ниже температуры плавления, а потом закалке с охлаждением водой. Температура закалки от 750 до 950С в зависимости от состава сплава. Отпуск при 200-400С производят в течение 2-4 часов. Наибольшие показатели твердости, до HV300 (около HRC 34) можно при этом получить для изделий из бериллиевых бронз.
  • Твердость серебра можно повысить отжигом до температуры, близкой к температуре плавления (тусклый красный цвет) с последующей закалкой.
  • Различные сплавы никеля подвергают отжигу при 700-1185С, такой широкий диапазон определяется разнообразием их составов. Для охлаждения используют соляные растворы, частички которых потом удаляют водой либо защитные газы, препятствующие окислению (сухой азот, сухой водород).

Оборудование и материалы

Для нагрева металла при термообработке используются 4 основных типа печей:
- соляная электродная ванна
- камерная печь
- печь непрерывного горения
- вакуумная печь

В качестве закалочных сред, в которых происходит охлаждение, используются жидкости (вода, минеральное масло, специальные водополимеры (Термат), растворы солей), воздух и газы (азот, аргон) и даже легкоплавкие металлы. Сам агрегат, где происходит охлаждение, называется закалочная ванна и представляет собой емкость, в которой происходит ламинарное перемешивание жидкости. Важной характеристикой закалочной ванны является качество удаления паровой рубашки.

Старение и другие методы повышения твердости

Старение - еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.

  • Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
  • Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
  • Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С

Химико-термическая обработка - насыщение поверхностного слоя легирующими элементами,

  • неметаллическими: углеродом (цементация) и азотом (азотирование) применяются для повышения износостойкости колен, валов, шестерней из низкоуглеродистых сталей
  • металлическими: например, кремнием (силицирование) и хромом помогает повысить износо- и коррозионную стойкость деталей

Цементирование и азотирование производят в шахтных электропечах. Существуют также универсальные агрегаты, позволяющие проводить весь спектр работ по термохимической обработке стальных изделий.

Обработка давлением (наклеп) - увеличение твердости в результате пластической деформации при относительно низких температурах. Таким образом происходит упрочнение низкоуглеродистых сталей при холодной объемной штамповке, а также чистых меди и алюминия.

В процессе термической обработки изделия из стали могут претерпевать поразительные превращения, приобретая износостойкость и твердость, в разы большую чем у исходного материала. Диапазон изменения твердости сплавов из цветных металлов при термической обработке гораздо меньше, но их уникальные свойства зачастую и не требуют масштабного улучшения.

Охлаждение заготовок при различных операциях термической обработки выполняется с разной скоростью. При отжиге охлаждение должно быть медленным, а при закалке некоторых сталей, напротив, очень быстрым. Скорость охлаждения регулируется применением различных охлаждающих сред.

Охлаждение заготовок с печью, т.е. весьма медленное, используют при отжиге. Для всех остальных операций термической обработки охлаждение выполняется с большей скоростью. Охлаждение на воздухе используют при нормализации, а также при закалке сталей с очень высокой прокаливаемостью (воздушно-закаливающиеся стали).

Минимально допустимая скорость охлаждения при закалке сталей (чем ниже скорость, тем меньше величина закалочных напряжений, см. 11.6 и рис. 11.16) определяется их прокаливаемостью. Чем выше прокаливаемость стали, тем медленнее можно производить закалочное охлаждение (см. рис. 5.22), поэтому для разных сталей используют закалочные жидкости, обеспечивающие различную скорость охлаждения.

Охлаждающая (закалочная) среда должна обеспечить высокую скорость охлаждения при температурах наименьшей устойчивости переохлажденного аустенита (650... ...550 °С, см. рис. 5.7), чтобы предотвратить его распад. Напротив, в интервале температур мартенситного превращения (Мн...Мк) целесообразно медленное охлаждение для уменьшения закалочных напряжений. Характеристики наиболее применяемых в практике термической обработки закалочных сред приведены в табл. 15.2.

Таблица 15.2

Скорость охлаждения в различных закалочных средах

Скорость охлаждения, °С/с, при температуре, °С

Эмульсия

Масло машинное

Масло трансформаторное

Медные плиты

Раствор (10%) в воде

Железные плиты

Воздух спокойный

Воздух под давлением

Вода и водные растворы – это дешевые и широко распространенные охладители. Их достоинство – высокая скорость охлаждения в области минимальной устойчивости переохлажденного аустенита; недостаток – также высокая скорость охлаждения в области мартенситного превращения (см. табл. 15.2). Использование этих сред повышает прокаливаемость, но увеличивает вероятность появления деформаций и трещин. Воду используют при закалке углеродистых сталей.

При закалке в воде возможно появление пятнистой твердости (см. 5.2.2). Для предотвращения этого брака в качестве закалочных жидкостей используют водные растворы солей и щелочей, обладающие более высокой температурой парообразования. Но при этом резко повышается скорость охлаждения (см. табл. 15.2), что определяет бо́льшую величину закалочных напряжений.

Масла в интервале Мн...Мк обеспечивают по сравнению с водой значительное снижение скорости охлаждения, это ведет к снижению закалочных напряжений и деформаций. Однако охлаждение в интервале минимальной устойчивости переохлажденного аустенита замедляется (см. табл. 15.2), поэтому масла используют при закалке легированных сталей с более высокой прокаливаемостью.

Эмульсия масла в воде (эмульсии состоят из мельчайших взвешенных капель масла в воде) и вода с температурой 30...40 °С снижают скорость охлаждения в интервале 650-550 °С (см. табл. 15.2) и тем самым вероятность возникновения деформаций, одновременно уменьшая прокаливаемость. Эти среды используют при закалке ТВЧ, когда необходимо закалить только поверхность детали.

Для сталей, обладающих глубокой прокаливаемостью, в качестве закалочной среды используют воздух – спокойный, который обеспечивает очень низкую скорость охлаждения, или под давлением, когда необходимо охлаждать быстрее (см. табл. 15.2). В обоих случаях закалочные напряжения малы.

Охлаждение под металлическими плитами также происходит с низкими скоростями (см. табл. 15.2). Такая технология совмещает закалку с правкой (исправлением формы) и практически исключает деформации.

При закалке крупногабаритных деталей применяют водовоздушные смеси. Их подают на деталь через специальные форсунки. Охлаждающую способность смесей можно регулировать, изменяя количество в ней воды и давление воздуха.

Использование в качестве охлаждающих жидкостей водных растворов полимеров позволяет менять скорость охлаждения в широких пределах – между скоростями охлаждения в воде и в масле. Их применяют при объемной и поверхностной закалке.

Для многих конструкционных сталей температуры Мн лежат в пределах 170-330 °С. Для их изотермической закалки (выполняется путем выдержки при температуре несколько выше точки Мн) используют расплавы солей. В частности, применяют уже рассмотренную выше смесь NaNO3 (45%) и KNO3(55%), работоспособную в интервале 160...650 °С.