Планирование Мотивация Управление

Оптимальное управление. Задачи оптимального управления Условия оптимальности управления

Любая автоматическая система предназначена для управления каким-либо объектом, должна быть построена таким образом, чтобы осуществляемое ею управление было оптимальным, т.е наилучшем в том или ином смысле. Задачи оптимального управления чаще всего возникают в подсистемах управления технологическими процессами. В каждом случае существует некоторая технологическая задача, для выполнения которой предназначается соответствующая машина или установка (объект управления), снабженная соответствующая системой управления, т.е. речь идет о некоторой САУ, состоящей из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило эта совокупность включает в себя измерительные, усилительные преобразовательные и исполнительные устройства. Если объединить усилительные, преобразовательные и исполнительные устройства в одно звено, называемое управляющим устройством или регулятором, то функциональная схема САУ может быть приведена к виду на рис. 1. 1.

Рис. 1. 2 Функциональная схема оптимальной системы

На вход управляющего устройства поступает задающее воздействие, которое содержит инструкцию о том, каково должно быть состояние объекта - так называемое «желаемое состояние».

На объект управления может поступать возмущающие воздействие z, представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями x (ошибка) .

Таким образом, задачей управляющего устройства является выработка такого управляющего воздействия, чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле. Для определения алгоритма управляющего устройства необходимо знать характеристики объекта и характер информации об объекте и возмущениях, которая поступает в управляющее устройство.

Под характеристиками объекта понимают зависимость выходных величин объекта от входных

где F, в общем случае,-- оператор, который устанавливает закон соответствия между двумя множествами функций. Оператор F объекта может быть задан различными способами: с помощью формул, таблиц, графиков. Его задают и в виде системы дифференциальных уравнений, которая в векторной форме записывается так

где и задавалось начальное и конечное значения вектора.

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всем другим, необходимо определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели -критерий оптимальности управления. Обычно критерий оптимальности - это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определенное значение критерия. В качестве критерия оптимальности могут быть выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, которые одновременно наилучшим образом удовлетворяли бы каждому требованию, не существует. Поэтому из всех требований нужно выбрать одно главное, которое должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений. Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

При решении задач оптимального управления наиболее важным является задание цели управления, что математически можно рассматривать как задачу достижения экстремума некоторой величины Q -- критерия оптимальности. В математике такую величину называют функционалом. В зависимости от решаемой задачи необходимо достижение минимума либо максимума Q. Например, запишем критерий оптимальности, в котором Q должно быть минимально

Как видно, величина Q зависит от функций.

В качестве критерия оптимальности могут быть приняты различные технические и технико-экономические показатели и оценки. Выбор критерия оптимальности -- это инженерная и инженерно-экономическая задача, которая решается на основе глубокого и всестороннего изучения управляемого процесса. В теории управления широко распространены интегральные функционалы, характеризующие качество функционирования системы. Достижение максимального или минимального значения этого функционала указывает на оптимальное поведение или состояние системы. Интегральные функционалы обычно отражают условия работы объектов управления и учитывают ограничения (по нагреву, прочности, мощности источников энергии и т. д.), накладываемые на координаты .

Для процессов управления использоваться такие критерии:

1. оптимальное быстродействие (время переходного процесса)

2. минимум среднеквадратичного значения ошибки.

3. минимум расхода затрачиваемой энергии.

Таким образом, критерий оптимальности может относиться к переходному или к установившемуся процессу в системе.

В зависимости от критерия оптимальности оптимальные системы можно разделить на два основных класса -- оптимальные по быстродействию и оптимальные по точности.

Системы оптимального управления в зависимости от характера критерия оптимальности можно разделить на три типа:

а) равномерно-оптимальные системы;

б) статистически-оптимальные системы;

в) минимаксно-оптимальные системы.

Равномерно-оптимальная -- это такая система, у которой каждый отдельный процесс является оптимальным. Например, в оптимальных по быстродействию системах при любых начальных условиях и любых возмущениях система приходит наикратчайшим во времени путем к требуемому состоянию.

В статистически-оптимальных системах критерий оптимальности имеет статистический характер. Такие системы должны быть наилучшими в среднем. Здесь не требуется или невозможна оптимизация в каждом отдельном процессе. В качестве статистического критерия чаще всего фигурирует среднее значение какого-либо первичного критерия, например математическое ожидание выхода некоторой величины за определенные пределы.

Минимаксно-оптимальные -- это такие системы, которые в наихудшем случае дают возможно наилучший результат. Они отличаются от равномерно-оптимальных тем, что в ненаихудшем случае могут дать худший результат, чем какая-либо другая система .

Оптимальные системы можно также подразделить на три типа в зависимости от способа получения информация об управляемом объекте:

оптимальные системы с полной информацией об объекте;

оптимальные системы с неполной информацией об объекте и пассивным ее накоплением;

оптимальные системы с неполной информацией об объекте и активным ее накоплением в процессе управления (системы дуального управления).

Существует две разновидности задач синтеза оптимальных систем:

Определение оптимальных значений параметров регулятора при заданных параметрах объекта и заданной структуре системы;

Синтез структуры и определение параметров регулятора при заданных параметрах и структуре объекта управления.

Решение задач первого типа возможно различными аналитическими методами при минимизации интегральных оценок, а также с помощью вычислительной техники (моделирование на ЭВМ), рассматривая заданный критерий оптимальности.

Решение задач второго типа основано на использовании специальных методов: методы классического вариационного исчисления, принципа максимума Понтрягина и динамического программирования Беллмана, а также методы математического программирования. Для синтеза оптимальных систем при случайных сигналах используются методы Винера, вариационные и частотные методы. При разработке адаптивных систем наиболее широкое применение имеют градиентные методы, позволяющие определить законы, изменения настраиваемых параметров.

Оптимальное управление

Оптимальное управление - это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы .

Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств .

Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление , принцип максимума Понтрягина и динамическое программирование Беллмана .

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Задача оптимального управления

Сформулируем задачу оптимального управления:

здесь - вектор состояния - управление, - начальный и конечный моменты времени.

Задача оптимального управления заключается в нахождении функций состояния и управления для времени , которые минимизируют функционал.

Вариационное исчисление

Рассмотрим данную задачу оптимального управления как задачу Лагранжа вариационного исчисления . Для нахождения необходимых условий экстремума применим теорему Эйлера-Лагранжа . Функция Лагранжа имеет вид: , где - граничные условия. Лагранжиан имеет вид: , где , , - n-мерные вектора множителей Лагранжа .

Необходимые условия экстремума, согласно этой теореме, имеют вид:

Необходимые условия (3-5) составляют основу для определения оптимальных траекторий. Написав эти уравнения, получаем двухточечную граничную задачу, где часть граничных условий задана в начальный момент времени, а остальная часть - в конечный момент. Методы решения подобных задач подробно разбираются в книге

Принцип максимума Понтрягина

Необходимость в принципе максимума Понтрягина возникает в случае когда нигде в допустимом диапазоне управляющей переменной невозможно удовлетворить необходимому условию (3), а именно .

В этом случае условие (3) заменяется на условие (6):

(6)

В этом случае согласно принципу максимума Понтрягина величина оптимального управления равна величине управления на одном из концов допустимого диапазона. Уравнения Понтрягина записываются при помощи функции Гамильтона Н, определяемой соотношением . Из уравнений следует, что функция Гамильтона H связана с функцией Лагранжа L следующим образом: . Подставляя L из последнего уравнения в уравнения (3-5) получаем необходимые условия, выраженные через функцию Гамильтона:

Необходимые условия, записанные в такой форме, называются уравнениями Понтрягина. Более подробно принцип максимума Понтрягина разобран в книге .

Где применяется

Принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления.

История

За разработку теории оптимального управления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому , Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия .

Метод динамического программирования

Метод динамического программирования основан на принципе оптимальности Беллмана, который формулируется следующим образом: оптимальная стратегия управления обладает тем свойством, что каково бы ни было начальное состояние и управление в начале процесса последующие управления должны составлять оптимальную стратегию управления относительно состояния, полученного после начальной стадии процесса . Более подробно метод динамического программирования изложен в книге

Примечания

Литература

  1. Растригин Л.А. Современные принципы управления сложными объектами. - М.: Сов. радио, 1980. - 232 с., ББК 32.815, тир. 12000 экз.
  2. Алексеев В.М., Тихомиров В.М. , Фомин С.В. Оптимальное управление. - М.: Наука, 1979, УДК 519.6, - 223 c., тир. 24000 экз.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптимальное управление" в других словарях:

    Оптимальное управление - ОУ Управление, обеспечивающее наивыгоднейшее значение определенного критерия оптимальности (КО), характеризующего эффективность управления при заданных ограничениях. В качестве КО могут быть выбраны различные технические или экономические… … Словарь-справочник терминов нормативно-технической документации

    оптимальное управление - Управление, цель которого заключается в обеспечении экстремального значения показателя качества управления. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно технической терминологии. 1984 г.]… … Справочник технического переводчика

    Оптимальное управление - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием: «О.у.»); означает выбор таких управляющих параметров, которые обеспечивали бы наилучшее с точки… … Экономико-математический словарь

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, напр. за минимальное время, с наибольшим экономическим эффектом, с максимальной точностью … Большой Энциклопедический словарь

    Летательным аппаратом раздел динамики полёта, посвящённый развитию и использованию методов оптимизации для определения законов управления движением летательного аппарата и его траекторий, обеспечивающих максимум или минимум выбранного критерия… … Энциклопедия техники

    Раздел математики, изучающий неклассические вариационные задачи. Объекты, с которыми имеет дело техника, обычно снабжены «рулями» с их помощью человек управляет движением. Математически поведение такого объекта описывается… … Большая советская энциклопедия

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Уже то обстоятельство, что в этой фразе встретилось несколько латинских слов (maximum - наибольшее, minimum - наименьшее, extremum - крайнее, optimus - оптимальное), указывает, что теория экстремальных задач была предметом исследования с древних времен. О некоторых таких задачах писали еще Аристотель (384-322 годы до н.э.), Евклид (III в. до н.э.) и Архимед (287-212 годы до н.э.). Основание города Карфагена (825 год до н.э.) легенда ассоциирует с древнейшей задачей определения замкнутой плоской кривой, охватывающей фигуру максимально возможной площади. Подобные задачи именуются изопериметрическими.

Характерной особенностью экстремальных задач является то, что их постановка была порождена актуальными запросами развития общества. Более того, начиная с XVII века доминирующим становится представление о том, что законы окружающего нас мира являются следствием некоторых вариационных принципов. Первым из них был принцип П. Ферма (1660 год), в соответствии с которым траектория света, распространяющегося от одной точки к другой, должна быть такова, чтобы время прохождения света вдоль этой траектории было минимально возможным. Впоследствии были предложены раз- личные широко используемые в естествознании вариационные принципы, например: принцип стационарного действия У.Р. Гамильтона (1834 год), принцип виртуальных перемещений, принцип наименьшего принуждения и др. Параллельно развивались и методы решения экстремальных задач. Около 1630 года Ферма сформулировал метод исследования на экстремум для полиномов, состоящий в том, что в точке экстремума производная равняется нулю. Для общего случая этот метод получен И. Ньютоном (1671) и Г.В. Лейбницем (1684), работы которых знаменуют зарождение математического анализа. Начало развития классического вариационного исчисления датируется появлением в 1696 году статьи И. Бернулли (ученика Лейбница), в которой сформулирована постановка задачи о кривой, соединяющей две точки А и В, двигаясь по которой из точки А в В под действием силы тяжести материальная точка достигнет В за минимально возможное время.

В рамках классического вариационного исчисления в XVIII-XIX веках установлены необходимые условие экстремума первого порядка (Л. Эйлер, Ж.Л. Лагранж), позднее развиты необходимые и достаточные условия второго порядка (К.Т.В. Вейерштрасс, А.М. Лежандр, К.Г.Я. Якоби), построены теория Гамильтона-Якоби и теория поля (Д. Гиль- берт, А. Кнезер). Дальнейшее развитие теории экстремальных задач привело в XX веке к созданию линейного программирования, выпуклого анализа, математического программирования, теории минимакса и некоторых иных разделов, одним из которых является теория оптимального управления.

Эта теория подобно другим направлениям теории экстремальных задач, возникла в связи с актуальными задачами автоматического регулирования в конце 40-х годов (управление лифтом в шахте с целью наискорейшей остановки его, управление движением ракет, стабилизация мощности гидроэлектростанций и др.). Заметим, что постановки отдельных задач, которые могут быть интерпретированы как задачи оптимального управления, встречались и ранее, например в “Математических началах натуральной философии” И. Ньютона (1687). Сюда же относятся и задача Р. Годдарда (1919) о подъеме ракеты на заданную высоту с минимальными затратами топлива и двойственная ей задача о подъеме ракеты на максимальную высоту при заданном количестве топлива. За прошедшее время были установлены фундаментальные принципы теории оптимального управления: принцип максимума и метод динамического программирования.

Указанные принципы представляют собой развитие классического вариационного исчисления для исследования задач, содержащих сложные ограничения на управление.

Сейчас теория оптимального управления переживает период бурного развития как в связи с наличием трудных и интересных математических проблем, так и в связи с обилием приложений, в том числе и в таких областях, как экономика, биология, медицина, ядерная энергетика и др.

Все задачи оптимального управления можно рассматривать как задачи математического программирования и в таком виде решать их численными методами.

При оптимальном управлении иерархическими многоуровневыми системами, например, крупными химическими производствами, металлургическими и энергетическими комплексами, применяются многоцелевые и многоуровневые иерархические системы оптимального управления. В математическую модель вводятся критерии качества управления для каждого уровня управления и для всей системы в целом, а также координация действий между уровнями управления.

Если управляемый объект или процесс является детерминированным, то для его описания используются дифференциальные уравнения. Наиболее часто используются обыкновенные дифференциальные уравнения вида. В более сложных математических моделях (для систем с распределёнными параметрами) для описания объекта используются дифференциальные уравнения в частных производных. Если управляемый объект является стохастическим, то для его описания используются стохастические дифференциальные уравнения.

Если решение поставленной задачи оптимального управления не является непрерывно зависящим от исходных данных (некорректная задача), то такая задача решается специальными численными методами.

Система оптимального управления, способная накапливать опыт и улучшать на этой основе свою работу, называется обучающейся системой оптимального управления.

Реальное поведение объекта или системы всегда отличается от программного вследствие неточности в начальных условиях, неполной информации о внешних возмущениях, действующих на объект, неточности реализации программного управления и т.д. Поэтому для минимизации отклонения поведения объекта от оптимального обычно используется система автоматического регулирования.

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Оптимальное управление технологическими процессами (Лекция)

ПЛАН ЛЕКЦИИ

1. Основные понятия нахождения экстремума функции

2. Классификация методов оптимального управления

1. Основные понятия нахождения экстремума функции

Всякая математическая постановка оптимальной задачи часто равносильна или эквивалентна задаче отыскания экстремума функции одной или многих независимых переменных. Поэтому для решения таких оптимальных задач могут быть использованы различные методы поиска экстремума.

В общем случае задача оптимизации формулируется следующим образом:

Найти extr функции R (x ), где ХХ

R (x ) – называется целевой функцией или функцией или критерием оптимизации или оптимизируемой функцией

Х – независимая переменная.

Как известно необходимые условиям существования экстремума у непрерывной функции R (x ) могут быть получены из анализа первой производной . При этом функция R (x ) может иметь экстремальные значения при таких значениях независимой переменной Х, где первая производная равна 0. т.е. =0. Графически равенство нулю производной означает, что касательная к кривой R (x ) в этой точке параллельна оси абсцисс.

Равенство производной =0 есть необходимое условие экстремума.

Однако равенство нулю производной еще не означает, что в этой точке существует экстремум. Для того, чтобы окончательно убедится, что в этой точке действительно существует экстремум необходимо провести дополнительные исследования, которые заключаются в следующих способах:

1. Способ сравнения значений функций

Сравнивают значение функции R (x ) в «подозреваемой» на экстремум точке Х К две соседние значения функции R (x ) в точках Х К-ε и Х К+ε , где ε- малая положительная величина. (Рис. 2)

Если оба рассчитанных значения R (Х К+ε) и R (Х К-ε), окажутся меньше или больше R (Х К), то в точке Х К существует максимум или минимум функции R (х).

Если же R (Х К) имеет промежуточное значение между R (Х К-ε) и R (Х К+ε), то функция R (х) не имеет ни максимума ни минимума.

2. Способ сравнения знаков производных

Опять рассмотрим функцию R (Х К) в окрестностях точки Х К, т.е. Х К+ε и Х К-ε . При этом способе рассматривается знак производной в окрестности точки Х К. Если знаки производной в точках Х К-ε и Х К+ε различные, то в точке Х К существует экстремум. При этом вид экстремума (min или max ) может быть найден по изменению знака производной при переходе от точки Х К-ε к точке Х К+ε.

Если знак меняется с «+» на «-», то в точке Х К – максимум (рис. 3б), если наоборот с «-» на «+», то минимум. (Рис. 3а)

3. Способ исследования знаков высших производных.

Этот способ применяют в тех случаях, когда в точке «подозреваемой» на экстремум существуют производные высших порядков, т.е. функция R (Х К) не только сама непрерывна, но имеет также непрерывные производные и .

Способ сводится к следующему:

В точке Х К «подозреваемой» на экстремум, для которой справедливо

вычисляется значение второй производной .

Если при этом , то в точке Х К – максимум,

если , то в точке Х К – минимум.

При решении практических задач оптимизации требуется отыскать не какое-нибудь min или max значение функции R (Х К), а наибольшее или наименьшее значение этой функции, которое называется глобальным экстремумом. (Рис. 4)


В общем случае задача оптимизации состоит в отыскивании экстремума функции R (Х), при наличии тех или иных ограничений на уравнения математической модели.

В том случае, если R (Х) является линейной, а область допустимых решений задается линейными равенствами и неравенствами, то задача отыскания экстремумов функции относится к классу задач линейного программирования.

Часто множество Х определяют как систему функции

Тогда запись математической постановки задачи линейного программирования выглядит так:

В том случае, если или целевая функция R (Х) или какая-либо из ограничений не является линейной функцией, то задача отыскания экстремума функции R (Х) относится к классу задач нелинейного программирования.

В том случае, если на переменные Х не наложено никаких ограничений, то такая задача называется задачей на безусловный экстремум.

Пример типовой задачи оптимизации

Задача о коробке максимального объема.

Из этой заготовки следует вырезать четыре ровных квадрата по ее углам, а полученную фигуру (рис.5 б) согнуть так, чтобы получилась коробка без верхней крышки (рис.6.5 в). при этом необходимо так выбрать размер вырезаемых квадратов, чтобы получилась коробка максимального объема.

На примере данной задачи можно проиллюстрировать все элементы постановки задач оптимизации.

Рис. 5. Схема изготовления коробки из прямоугольной заготовки фиксированного размера

Оценочной функцией в данной задаче служит объем изготовленной коробки. Проблема заключается в выборе размера вырезаемых квадратов. Действительно, если размер вырезаемых квадратов слишком мал, то будет получена широкая коробка малой высоты, а значит и объем окажется невелик. С другой стороны, если размер вырезаемых квадратов будет слишком большой, то будет получена узкая коробка большой высоты, а значит, и ее объем также окажется невелик.

В то же время на выбор размера вырезаемых квадратов оказывает влияние ограничение размера исходной заготовки. Действительно, если вырезать квадраты со стороной, равной половине стороны исходной заготовки, то задача теряет смысл. Сторона вырезаемых квадратов также не может превышать половину сторон исходной заготовки, поскольку это невозможно из практических соображений. Из этого следует, что в постановке данной задачи должны присутствовать некоторые ограничения.

Математическая постановка задачи о коробке максимального объема . Для математической постановки данной задачи необходимо ввести в рассмотрение некоторые параметры, характеризующие геометрические размеры коробки. С этой целью дополним содержательную постановку задачи соответствующими параметрами. С этой целью будем рассматривать квадратную заготовку из некоторого гибкого материала, которая имеет длину стороны L (рис. 6). Из этой заготовки следует вырезать четыре ровных квадрата со стороной по ее углам, а полученную фигуру согнуть, так чтобы получилась коробка без верхней крышки. Задача состоит в таком выборе размера вырезаемых квадратов, чтобы в результате получилась коробка максимального объема.

Рис. 6. Схема изготовления из прямоугольной заготовки с указанием ее размеров

Для математической постановки данной задачи необходимо определить переменные соответствующей задачи оптимизации, задать целевую функцию и специфицировать ограничения. В качестве переменной следует взять длину стороны вырезаемого квадрата r , которая в общем случае, исходя из содержательной постановки задачи, принимает непрерывные действительные значения. Целевой функцией является объем полученной коробки. Поскольку длина стороны основания коробки равна: L - 2r , а высота коробки равна r , то ее объем находится по формуле: V (r) = (L -2r ) 2 r . исходя из физических соображений, значения переменной r не могут быть отрицательными и превышать величину половины размера исходной заготовки L , т.е. 0,5L .

При значениях r = 0 и r = 0,5 L соответствующие решения задачи о коробке являются выраженными. Действительно, в первом случае заготовка остается без изменения, а во втором случае она разрезается на 4 одинаковых части. Поскольку эти решения имеют физическую интерпретацию, задачу о коробке для удобства ее постановки и анализа можно считать оптимизации с ограничениями типа нестрогих неравенств.

С целью унификации, обозначим переменную через х = r , что не оказывает влияния на характер решаемой задачи оптимизации. Тогда математическая постановка задачи о коробке максимального объема может быть записана в следующем виде:

где (1)

Целевая функция данной задачи является нелинейной, поэтому задача о коробке максимального размера относится к классу задач нелинейного программирования или нелинейной оптимизации.

2. Классификация методов оптимального управления

Оптимизация процесса заключается в нахождении оптимума рассматриваемой функции или оптимальных условий проведения данного процесса.

Для оценки оптимума, прежде всего, необходимо выбрать критерий оптимизации. Обычно, критерий оптимизации выбирает из конкретных условий. Это могут быть технологический критерий (например, содержание Сu в отвальном шлаке) или экономический критерий (минимальная стоимость продукта при заданной производительности труда) и др. На основании выбранного критерия оптимизации составляется целевая функция, представляющая собой зависимость критерия оптимизации от параметров влияющих на его значение. Задача оптимизации сводится к нахождению экстремума целевой функции. В зависимости от характера рассматриваемых математических моделей принимаются различные математические методы оптимизации.

Общая постановка задачи оптимизации заключается в следующем:

1. Выбирается критерий

2. Составляется уравнение модели

3. Накладывается система ограничения

4. Решение

модель - линейная или нелинейная

Ограничения

В зависимости от структуры модели применяются различные методы оптимизации. К ним относятся:

1. Аналитические методы оптимизации (аналитический поиск экстремума, метод множителей Лагранжа, Вариационные методы)

2. Математическое программирование (линейное программирование, динамическое программирование)

3. Градиентные методы.

4. Статистические методы (Регрессионный анализ)

Линейное программирование . В задачах линейного программирования критерий оптимальности представляется в виде:

где - заданные постоянные коэффициенты;

Переменные задачи.

Уравнения модели представляют собой линейные уравнения (полиномы) вида на которые накладывается ограничения в виде равенства или неравенства, т.е. (2)

В задачах линейного программирования обычно предполагается, что все независимые переменные Х j неотрицательны, т.е.

Оптимальным решением задачи линейного программирования является такая совокупность неотрицательных значений независимых переменных

Которая удовлетворяет условия (2) и обеспечивает в зависимости от постановки задачи max или min значение критерия.

Геометрическая интерпретация имеет вид: - критерий при наличии ограничении на переменных Х 1 и Х 2 типа равенств и неравенств

R имеет постоянное значение вдоль линии l . Оптимальное решение будет в точке S , т.к. в этой точке критерий будет max .Одним из методов решения задачи оптимизации линейного программирования является симплекс-метод.

Нелинейное программирование . Математическая постановка задачи нелинейного программирования заключается в следующем: Найти экстремум целевой функции , которая имеет вид нелинейности.

На независимые переменные налагаются различные ограничения типа равенств или неравенств

в настоящее время для решения задач нелинейного программирования применяются довольно большое число методов.

К ним относится: 1) Градиентные методы (метод градиента, метод наискорейшего спуска, метод образов, метод Розенброка и т.д.)

2) Безградиентные методы (метод Гауса-Зейделя, метод сканирования).

Градиентные методы оптимизации

Эти методы относятся к численным методам поискового типа. Сущность этих методов заключается в определении значений независимых переменных, дающих наибольшее (наименьшее) изменение целевых функции. Обычно это достигается при движении вдоль градиента, ортогонального к контурной поверхности в данной точке.

Рассмотрим метод градиента. В этом методе используется градиент целевой функции. В методе градиента шаги совершаются в направлении наибыстрейшего уменьшения целевой функции.

Рис. 8. Поиск минимума методом градиента

Поиск оптимума производится в два этапа:

1-этап: - находят значения частных производных по всем независимым переменным, которые определяют направление градиента в рассматриваемой точке.

2-этап: - осуществляется шаг в направлении обратном направлению градиента, т.е. в направлении наибыстрейшего убывания целевой функции.

Алгоритм градиентного метода может быть записан следующим образом:

(3)

Характер движения к оптимуму методом наискорейшего спуска заключается в следующем (рис. 6.9), после того как в начальной точке найден градиент оптимизируемой функции и тем самым определено направление ее наибыстрейшего убывания в указанной точке, в данном направлении делается шаг спуска. Если значение функции в результате этого шага уменьшилась, то производится очередной шаг в том же направлении, и так до тех пор, пока в этом направлении не будет найден минимум, после чего вычисляется снова градиент и определяется новое направление наибыстрейшего убывания целевой функции.

Безградиентные методы поиска экстремума. Эти методы, в отличии от градиентных, используют в процессе поиска информации, получаемую не при анализе производных, а от сравнительной оценки величины критерия оптимальности в результате выполнения очередного шага.

К безградиентным методам поиска экстремума относится:

1. метод золотого сечения

2. метод с использованием чисел Фибония

3. метод Гауса-Зейделя (метод получения изменения переменной)

4. метод сканирования и т.д.