Планирование Мотивация Управление

Техническая диагностика газотурбинных двигателей. Методы технической диагностики авиационной техники Учреждение высшего профессионального

Введение

1 Обзор и обоснование 7

1.1 Диагностирование основных объектов летательного аппарата 10

1. 1. 1 Методы диагностики элементов конструкции планера 10

1. 1.2 Техническое диагностирование авиационных двигателей 24

1.1. 2. 1 Авиационный газотурбинный двигатель как объект диагностирования 24

1.1. 2. 2 Методы и средства технического диагностирования ГТД 26

1. 1.3 Методы и средства диагностирования систем летательных аппаратов и их агрегатов 43

1.1.3.1 Методы диагностирования гидравлической системы и ее агрегатов 43

2 Системы летательного аппарата как объекты диагности рования

2.1 Общие сведения 56

2.2 Контроль работы масляной системы 59

2. 3 Ограничения масляной системы 59

2.4 Неисправности масляной системы 60

2.5 Технология обслуживания масляной системы 61

3 Разработка методики распознавания неисправностей систем и агре гатов летательных аппаратов

3. 1 Методы распознавания в технической диагностике 63

3. 1. 1 Вероятностные методы распознавания 66

3.1.1.1 МетодБайеса 66

3. 1. 1.2 Метод статистических решений 68

3.1.1.2.1 Метод минимального риска 70

3.1.1.2.2 Метод минимакса 71

3. 1. 1. 2. 3 Метод Неймана-Пирсона 71

3. 1. 2 Детерминистические методы распознавания 71

3. 1. 2 .1 Линейные методы Методы стохастической аппроксимации 73

3. 1. 2. 2 Метрические методы распознавания 76

3. 1. 2. 3 Логические методы 77

3.1. 2.4 Распознавание кривых 77

3. 1. 2. 4. 1 Оценка неслучайных отклонений по контрольным уровням 77

3. 1. 2. 4, 2 Оценка текущего значения параметра 79

3. 1. 2. 4. 3 Сглаживание кривых 79

3. 2 Методика расчета 81

3. 2. 1 Применение обобщенной формулы Байеса для определения неисправного состояния 81

3. 2. 2 Определение вариантов и условий расчета 87

3.2. 3 Вывод расчетных выражений 90

4 Реализация методики распознавания неисправностей

4. 1 Определение условий расчета неисправных состояний масляной системы 136

4. 2 Признаки и неисправные состояния масляной системы 137

4. 3 Расчет и определение неисправностей масляной системы двигателя Д-ЗОКУ-154 145

4.3. 1 Определение вариантов расчета неисправных состояний масляной системы 157

4. 4 Основные результаты и выводы по работе 209

Заключение 211

Библиографическое описание 213

Введение к работе

Летательные аппараты (ЛА) являются одной из самых сложных технических систем, создаваемых и использующихся человеком. Но как любое техническое изделие, ЛА имеют свойство отказывать, то есть прерывать процесс функционирования, а это снижает безопасность полетов.

Устранить отказ или неисправность можно, но, не выявив и не устранив причину их вызывающую, нельзя гарантировать надежность. Причину можно определить по проявляющимся признакам (последствиям).

Если есть один признак, то он явно указывает на неисправный элемент, агрегат или изделие. Намного сложнее, когда неисправность проявляется несколькими признаками. В этом случае, даже высоко квалифицированный специалист не всегда способен определить причину неисправности. Требуется дополнительная проверка, контроль, время и материальные затраты. Проблемы, связанные с определением причины неисправности можно разрешить, используя методы распознавания. Рассчитанные и построенные на их основе модели, таблицы, графики, позволят сократить время на отыскание причины отказа или неисправности и снизить материальные затраты.

Цель работы

Повышение надежности и летной годности летательных аппаратов, путем разработки внедрения методов распознавания неисправных состояний агрегатов, изделий и систем.

Задачи исследования

    Сбор и анализ статистического материала о неисправных состояниях систем ЛА.

    Анализ и определение возможности применения метода Байеса к неисправным состояниям агрегатов, изделий и систем ЛА.

    Определение возможных вариантов расчета вероятности появления неисправных состояний при проявлении различных сочетаний признаков неисправностей.

    Определение условий реализации математической модели определения неисправных состояний при проявлении различных сочетаний признаков.

    Разработка методики определения неисправных состояний агрегатов, изделий и систем ЛА, с использованием метода Байеса.

    Применение разработанной методики в практической деятельности при техническом обслуживании и ремонте ЛА.

Объектом исследования является агрегаты, изделия и системы авиационной техники в неисправных состояниях.

Предметом исследования является функциональные связи агрегатов, изделий, систем ЛА и математическая модель поиска неисправностей, основанная на методе Байеса.

Научная новизна диссертационной работы заключается:

    В решении задачи поиска неисправных состояний агрегатов, изделий и систем ЛА с использованием вероятностного метода распознавания -метода Байеса.

    В обосновании условий построения математической модели вероятности появления неисправных состояний агрегатов и систем ЛА.

    В разработке математической модели для вероятности появления того или иного неисправного состояния агрегатов и систем ЛА, с использованием метода Байеса.

    В разработке методики определения неисправных состояний конкретных систем ЛА.

    В разработке методики представления результатов расчетов диагностирования неисправного состояния агрегатов и систем в виде, удобном для использования в процессе технической эксплуатации авиационной техники.

Практическая ценность работы заключается в том, что:

1. Использование методики определения неисправных состояний ЛА
с применением вероятностного метода Байеса, позволяет сокращать время
и затраты при проведении работ по восстановлению надежности ЛА и
обеспечению безопасности полетов.

2. Разработанная методика определения неисправных состояний
авиационной техники, применима к любым системам всех типов самолетов
и вертолетов.

    Применение методики на новых типах ЛА, в период их освоения, когда еще не накоплен опыт технической эксплуатации, даст возможность ускорить процесс восстановления надежности.

    Разработанные методики и математическая модель, дают возможность группам надежности и технической диагностики авиакомпаний самостоятельно использовать их при выполнении работ по восстановлению надежности ЛА.

Авиационный газотурбинный двигатель как объект диагностирования

Авиационный двигатель является наиболее сложным и ответственным изделием AT. Отказ двигателя приводит к сложной ситуации в полете, а возможно, и к тяжелым последствиям. Поэтому авиационному двигателю уделяется особое внимание в технической диагностике.

Диагностика авиационных ГТД базируется на общей теории технической диагностики и ее развитие неразрывно связано с прогрессом в авиадвигателестроении и совершенствованием системы эксплуатации ЛА. За последние годы развития авиации значение технической диагностики авиационных ГТД значительно возросло в связи: с поступлением в эксплуатацию более сложных в изготовлении и применении авиационных ГТД с большими тяговооруженностью и ресурсом, с повышенными требованиями к надежности; с необходимостью выявлением неисправностей на ранней стадии их развития с целью предотвращения отказов в полете; с затруднением быстро находить неисправности без применения специальных методов и средств диагностирования; с переходом на прогрессивные методы технического обслуживания и ремонта.

Авиационный ГТД характеризуется наличием взаимодействующих многих сложных систем: компрессора, камеры сгорания, турбины, топли-ворегулирующей аппаратуры, систем смазки, суфлирования, запуска, отбора воздуха, управления поворотом лопаток спрямляющих аппаратов и т. д. Поэтому оценка технического состояния ГТД возможна на основании измерения и анализа параметров этих систем и параметров, отражающих взаимосвязь между системами. Опыт эксплуатации показывает, что для диагностирования современного ГТД глубиной до узла необходимо измерить и специально обработать до 1000 параметров. Трудности выбора параметров для диагностирования состоят в том, что каждому режиму работы двигателя соответствуют свои параметры. Это объясняется динамикой взаимодействия газовых потоков в проточной части двигателя и вращающихся масс роторов, тепловой инерционностью двигателя. Основные неисправные состояния авиационных ГТД. Неисправные состояния ГТД приводятся по его основным узлам.

Компрессор! абразивный и эрозийный износ лопаток и проточной части, повреждение лопаток посторонними предметами и помпаж компрессора, обрыв лопаток из-за появления усталостных трещин.

Камера сгорания: прогар жаровой трубы и корпуса камеры сгорания, деформация и трещины жаровой трубы и корпуса камеры сгорания из-за неравномерного распределения поля температур.

Газовая турбина: вытяжка рабочих лопаток турбины вследствие воздействия на них центробежных сил в условиях высокой температуры; об-горание или перегрев сопловых и рабочих лопаток из-за нарушения процесса сгорания топлива; обрыв или разрушение рабочих лопаток из-за превышения температуры газов или неправильной эксплуатации (останов двигателя без предварительного охлаждения на пониженных режимах), повышенной вибрации ГТД; усталостные или термические трещины на пере и хвостовиках лопаток.

Подшипники опор ротора двигателя: конструктивно - производственных причин, масляного голодания, попадания посторонних частиц на дорожки качения, повышенных вибраций двигателя, перегрева или усталостных разрушений.

Масляная и топливная системы двигателя: появление стружки в масле из-за разрушения деталей двигателя; большой расход масла из-за внешних утечек, износа уплотнительных колец и втулок; падение и колебание давления масла в результате разрегулировки и выхода из строя маслонасо-сов, редукционных клапанов и т. д.; перегрев масла в результате отказа агрегатов системы: радиаторов, насосов; внешняя негерметичность соединений; разрушение крыльчатки и подшипников подкачивающего насоса, Методы и средства технического диагностирования ГТД

В настоящее время для диагностирования ГТД применяются различные методы ТД, использующие множество различных по своей природе диагностических сигналов. Методы технической диагностики ГДТ представлены на рисунке 1.4.

Виброакустическая диагностика ГТД. При работе ГТД все его детали, узлы и агрегаты совершают вынужденные и резонансные колебания. Эти колебания зависят от величины и характера возмущающих сил, их частот, от упруго-массовых характеристик элементов конструкции двигателя, которые, в свою очередь, зависят от ряда конструктивных, технологических и эксплуатационных факторов.

Технология обслуживания масляной системы

К неисправностям масляной системы относятся: а) отклонения параметров маслосистемы от нормы; б) наличие стружки на фильтрующих элементах основного мас ляного фильтра; в) наличие стружки на фильтре фильтра-сигнализатора; г) наличие стружки на магнитных пробках. 2 К неисправностям по отклонению параметров маслосистемы от нормы относятся: а) Мало давление масла (на режиме малого газа - менее 2,5 кгс/см, на остальных режимах - менее 3,5 кгс/см2). б) Утечка масла из маслобака в двигатель на стоянке (более 1 кг в су тки). в) Повышение уровня масла в маслобаке выше 33±1 кг (попадание топлива в масляную систему). 3 К неисправностям фильтра-сигнализатора относятся: а) Отсутствие сигнала - табло «СТРУЖКА В МАСЛЕ» не го рит. При осмотре фильтра во время проведения регламентных работ обнаружена стружка. б) Ложный сигнал - табло «СТРУЖКА В МАСЛЕ» горит. При осмотре фильтра стружка не обнаружена. 1 Слив масла из системы Слив масла из масляной системы производится в следующих случаях: -при консервации масляной и топливной систем, если масло в двигателе не соответствует нормам; -при замене агрегатов масляной системы; -в случае замены марки масла. 2 Заполнение системы маслом Заполнение маслом маслосистемы производится в следующих случаях: -при замене двигателя; -при замене агрегатов масляной системы; -в случае замены марки масла. 3

Промывка масляной системы Промывка масляной системы двигателя производится в следующих случаях: -при съеме двигателя, который эксплуатировался на масле ВНИИ НП-50-1-4Ф; -в случае необходимости замены масла ВНИИ НП-50-1-4Ф на масло МК-8 или МК-8П; -при обнаружении металлической стружки на ФСС и на масло фильтре, если двигатель допущен к дальнейшей эксплуатации. 4 Регулирование давления в маслосистеме Регулирование давления масла производится в случае, когда мало или велико давление масла в двигателе. Давление масла регулируется винтом редукционного клапана нагнетающего насоса, который установлен на КИМА. 5 Консервация масляной системы Консервация масляной системы предусматривает защиту масляной системы и трущихся деталей двигателя от коррозии при хранении. Для консервации масляной системы применяются масла МК-8 и МК-8П. При соответствии масла основным требованиям масляная система двигателя считается законсервированной. Как исключение, допускается консервация двигателя маслом ВНИИ НП-50-1-4Ф с отметкой об этом в формуляре. 6 Консервация и упаковка агрегатов Консервация агрегатов масляной системы производится при необходимости длительного хранения, а также при направлении их на завод-поставщик для исследования. Консервации подвергаются: откачивающий насос передней опоры, откачивающий и подкачивающий насосы КПМА и центробежный суфлер задней опоры. 7 Редукционный клапан подкачивающего насоса Редукционный клапан подкачивающего насоса расположен на КПМА с левой стороны (по полету). Редукционный клапан служит для регулировки давления масла на входе в нагнетающий насос. 8 Обратный клапан Обратный клапан расположен на крышке подкачивающего насоса и служит для предотвращения ухода масла из маслобака во время стоянки.

После монтажа клапана производится проверка на герметичность. 9 Масляный фильтр Масляный фильтр расположен в нижней части КПМА. Демонтаж фильтра из корпуса КПМА производится с целью осмотра и промывки фильтра. 10 Фильтрующие секции маслофильтра Демонтаж фильтрующих секции маслофильтра производится с целью глубокой промывки сеток фильтрующих секций или их замены. Глубокая промывка делается через 250±25 час, Одной из основных задач технической диагностики является распознавание технического состояния объекта в условиях ограниченной информации. Анализ состояния проводится в эксплуатационном режиме, при котором получение исчерпывающей информации крайне затруднительно, и поэтому на основании полученной информации не всегда представляется возможным сделать однозначное заключение. В связи с этим приходится применять различные методы распознавания. Распознавание технического состояния объекта диагностирования -это отнесение его состояния к одному из возможных классов(диагнозов). Совокупность последовательных действий в процессе распознавания называется алгоритмом распознавания. Существенной частью распознавания является выбор параметров, описывающих состояние объекта. Они должны быть достаточно информативными, чтобы при выбранном числе диагнозов процесс распознавания мог быть осуществлен.

Линейные методы Методы стохастической аппроксимации

Линейные методы разделения, методы стохастической аппроксимации имеют целью определение положения разделяющей плоскости, делящей всё пространство на области диагнозов (состояний) Пусть в пространстве признаков (рис. 11) содержатся точки, принадлежащие к диагнозам (состояниям) Si,..., Sn (в нашем случае двум). Для каждого из этих диагнозов существуют скалярные функции fj(X)(i=l, 2,..., п), Которые удовлетворяют условию f;(X) fj(X) при XGS; (j=l,2, ... , n; і).Такие функции называются дискриминантными. Дискри-минантная функция fj(X) зависит от всех координат пространства, т. е. fi(X)=f(xb х2) хп) и для точек диагноза Sj имеет наибольшее значение по сравнению со значениями дискриминантных функций других диагнозов Sj Записываются дискриминантные функции следующим образом: где Хі1ї...Ді/н+л -«весовые» коэффициенты. Для удобства геометрической интерпретации вектор " X " дополняется еще одним компонентом xN+l = 1. Если диагнозы Si и S2 имеют общую границу, то уравнение разделяющей поверхности будет иметь вид Существенное значение имеет разделение на два состояния Si и S2. Смотри рисунок 3. 3. Этот случай называется дифференциальной диагностикой или дихотомией. При распознавании двух состояний в качестве разделяющей функции можно принять разность соответствующих дискриминальных функций Разделяющая функция дает следующее решающее правило:

Для повышения надежности распознавания применяют " пороги чувствительности - є", и тогда решающее правило имеет вид при f(Х) 8, XeSi ; при f(X) -c ,XeS2; при -s f(X) e - отказ от распознавания (т. е. требуются дополнительные исследования). Таким образом, в общем виде разделяющую функцию при диагностировании на два состояния можно представить в виде скалярного произведения Разделяющая поверхность является плоскостью в (w+І) - мерном пространстве или гиперплоскостью. Уравнение разделяющей гиперплоскости Последнее уравнение означает, что "весовой" вектор перпендикулярен разделяющей гиперплоскости. В дополнительном пространстве признаков разделяющая гиперплоскость всегда проходит через начало координат. Следовательно, вектор X однозначно определяет положение разделяющей плоскости в пространстве признаков. Разработан специальный ал горитм определения "весового" вектора с помощью обучающей последовательности, состоящей из совокупности образцов с известным диагнозом. Эти методы распознавания базируются на предположении, что изображения объектов с одинаковым состоянием более близким друг к другу, чем изображения объектов, имеющих различные состояния, и основаны на количественной оценке этой близости. В качестве изображения объекта принимается точка в пространстве признаков, а мерой близости считается расстояние между точками. Рассмотрим метрический метод на примере, приведенном на рисунке 3.4. Допустим, что для диагностирования в пространстве признаков предъявлен объект X и используется диагностическая мера расстояния L. Для отнесения объекта X к одному из диагнозов определяют расстояние L до эталонных точек ai и а2.

Расчет и определение неисправностей масляной системы двигателя Д-ЗОКУ-154

В числителе: произведение значения Р(S ,) - вероятность появления неисправного /-го состояния (для рассматриваемого случая - S2) - ($2) , на значение Р(К / S /) - вероятность проявления комплекса признаков (для нашего случая - проявление одного признака - kj), в неисправном і- ом состоянии (для рассматриваемого случая - S2). Исходя из этих обозначений, в числителе получим выражение: P(S2) Р(к і / S2). В знаменателе: сумма произведения значения P(S с) - вероятность появления сочетаний неисправных состояний, то есть их совместное появление (для рассматриваемого случая Sj и S2 - определяют количество слагаемых), на значение Р(К / S с) - вероятность проявления комплекса признаков (применительно к нашему случаю - проявление одного признака kj), в сочетании неисправных состояний (для рассматриваемого случая - Si и S2) - Р(к i/Sj) и Р(к 1/S2). Исходя из этих обозначений, в знаменателе получим выражение: P(Sj)P(k \/S\) + P(S2)P(k 1/S2). Сведем полученные выражения в вид Сравнив полученные результаты по II варианту - проявление одного признака в двух неисправных состояниях (S] и S2), приходим к определенному выводу.

Третий (III) вариант не требует расчета. Это связано с тем что, если оба признака проявляются в одном неисправном состоянии, то это однозначно указывает именно на эту неисправность. Но в целях проверки возможности применения обобщенной формулы Баейса проведем расчет и посмотрим на результат. Переходим к рассмотрению III варианта - проявление двух признаков и к2) в одном неисправном СОСТОЯНИИ;). Для случая I а) - одновременное проявление двух признаков (к(и к2) в одном неисправном состоянии (Si). Необходимо получить- PfSj/ к\ к2). Обобщенная формула Баейса (3. 27) В числителе; произведение значения Р(S j) - вероятность появления неисправного /-го состояния (применительно к рассматриваемому случаю -Si) - P(Si), на значение Р(К / S /) - вероятность проявления комплекса признаков (для рассматриваемого случая - одновременное проявление признаков- kt и к2), в неисправном состоянии (для рассматриваемого случая - Si) - Р(к, k2/Si) или P(k]/Si) P(k2/S[). Исходя из этих обозначений, в числителе получим выражение: P(S) P(kik2/Si) или P(S ki) Р(к i/S]) Р(к2/ Si). В знаменателе: сумма произведения значения P(S с) - вероятность появления сочетаний неисправных состояний (для рассматриваемого случая только S]- определяют количество слагаемых) - P(S]), на значение Р(К / S с) - вероятность проявления комплекса признаков (для рассматриваемого случая - одновременное проявление признаков - к] и к2), в сочетании неисправных состояний (в рассматриваемом случае только Si) - P(kj/ S]) и Р(кг/ S]). В результате в знаменателе получаем выражение - P(Si) Р(к)P(k2/S]). Сведем полученное выражение к виду То есть, получаем такой же результат, что и в случае I а). Для случая I в) - при неявном проявлении другого (второго) признака \к} ик2). Нам необходимо получить-P(Sl /к:к2) Обобщенная формула Баейса (3.27) В числителе: произведение значения Р(S ;) - вероятность появления неисправного /-го состояния (применительно к рассматриваемому случаю - Si) - P(Si), на значение Р(К / S ;) - вероятность проявления комплекса признаков (для нашего случая - проявление признак ki и не проявление признака к2) -кх Ї, в неисправном /- ом состоянии (для рассматриваемого случая - Si) - (,/,) или Р{кх I S{)P{k2lSx). Исходя из этих обозначений, в числителе получим выражение: P{S{)P{k\ I Sj)P(k2 /S{). В знаменателе: сумма произведения значения P(S с) - вероятность появления сочетаний неисправных состояний (для рассматриваемого случая только - Si) - P(Sj), на значение Р(К / S с) - вероятность проявления комплекса признаков (для рассматриваемого случая - проявление признак k и не проявление признака к2), в сочетании неисправных состояний (в рассматриваемом случае только Si) - Р(кх IS{)P{k2ISx). В результате в знаменателе получаем выражение - / (,) Р(кх 15,) Р(ї2 / ,). Сведем полученные выражения в выражению

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минобрнауки России

Научно-исследовательская работа

Методы технической диагностики авиационной техники

Москва 2014

Введение

3. Методы обобщенной оценки состояния технических систем

3.1 Методы сверток частных параметров контроля к обобщенному показателю

3.2 Методы обобщенной оценки состояния технических систем по информационному критерию

Заключение

Литература

Введение

Техническая диагностика -- это направление в науке и технике, представляющее собой процесс определения технического состояния объекта диагностирования с определенной степенью точности. Основной целью технического диагностирования авиационного ГТД является организация процессов оценки его технического состояния.

Диагностика как научное направление формирует идеологию, принципы, способы диагностирования и прогнозирования технического состояния изделий в процессе их испытаний и эксплуатации.

Техническая диагностика решает следующие задачи:

¦ создание контролепригодного изделия;

¦ разработка систем и средств получения необходимой информации;

¦ разработка методов обработки и анализа получаемой информации;

¦ обоснование и реализация наиболее рациональных способов регистрации параметров;

В данной работе рассматриваются методы технического диагностирования авиационной техники.

1. Методы диагностики авиационной техники

1. Методы диагностики АТ и их возможности

В процессе диагностирования авиационной техники при ее эксплуатации по состоянию можно выделить три основных этапа (рис. 1.). Первый из них - оперативная диагностика, задача которой заключается в определении, можно ли продолжать нормальную эксплуатацию данного объекта АТ ("система исправна") или этот объект должен быть подвергнут до очередного полета каким-либо процедурам обслуживания ("система не - исправна").

Рис. 1. Общая схема эксплуатационной диагностики

Такая задача в том или ином объеме для всех наблюдаемых объектов АТ должна решаться, как правило, в конце каждого полетного дня, "на завтра". Оперативность достигается надлежащей организацией потока информации и применением компьютерной техники для ее обработки.

Второй этап - дополнительный диагностический анализ, результатом которого является перечень процедур обслуживания элементов и систем АТ, признанных неисправными, без снятия их с самолета ("на крыле").

Третий этап -- выполнение указанных процедур обслуживания, после чего принимается решение о дальнейшей эксплуатации объекта АТ или снятии его с самолета и направлении в ремонт.

В настоящее время широко распространены и значительно развиты методы и средства диагностики, основанные на различных физических принципах, позволяющие охватить контролем наиболее ответственные узлы, агрегаты и системы. В качестве примера остановимся на методах диагностики авиационных газотурбинных двигателей (ГТД) (рис. 2.), являющихся наиболее ответственными объектами АТ. Условно их можно разделить на методы прямых измерений структурных диагностических параметров, определяющих техническое состояние ГТД, и методы безразборной (оперативной) диагностики по косвенным параметрам. В качестве косвенных используют диагностические параметры, содержащие информацию об изменении структурных характеристик состояния двигателя. Эти методы позволяют получить достаточно точные результаты оценки, например, износа отдельных элементов. Однако их применение затруднено низкой технологичностью ГТД и в большинстве случаев вызывает необходимость разборки двигателя. Это снижает достоверность контроля, поскольку состояние любого технического объекта после разборки не адекватно его состоянию до этих процедур. Необходимо отметить также, что в процессе эксплуатации разборка ГТД в большинстве случаев не представляется возможной.

Методы оперативной диагностики по косвенным параметрам лишены перечисленных недостатков, хотя в настоящее время они не всегда позволяют локализовать место дефекта. Использование методов измерений структурных характеристик может оказаться необходимым в случае невозможности применения методов оперативной диагностики или для уточнения результатов контроля.

Рис. 2. Методы и средства диагностики ГТД

К основным из используемых и перспективных методов оперативной диагностики ГТД относят:

· диагностику по результатам анализа термогазодинамических параметров;

· диагностику по тепловым параметрам;

· по виброакустическим параметрам;

· трибодиагностику;

· оптико-визуальную диагностику;

· анализ продуктов сгорания;

· измерение выбега ротора.

Применение каждого из методов осуществляется с помощью диагностического оборудования. Так, например, для анализа состава примесей в масле используют различные по сложности и принципам действия средства - от простейших магнитных пробок, установленных в магистралях маслосистемы двигателя, до сложных спектроанализаторов.

Диагностика неисправностей по тепловым параметрам предусматривает получение информации как от термодатчиков (термопреобразователей), так и от фотоэлектрических пирометров и тепловизоров, в последнее время успешно внедряемых в диагностической практике.

Контроль виброакустических параметров предполагает применение различных типов вибропреобразователей и сигнальной аппаратуры. Разрабатываются методы оценки напряженности конструктивных элементов с помощью голографических установок (создание т.н. "вибропортретов").

Подчас обнаружение неисправностей упомянутыми методами требует создания достаточно сложного математического аппарата, позволяющего идентифицировать признаки с конкретными дефектами.

Относительное многообразие методов объясняется тем, что ни один из них не позволяет учесть все требования, предъявляемые к формированию диагноза со 100% достоверностью, поскольку они несут специфическую информацию разной ценности.

Ни один из методов не позволяет оценить состояние двигателя с достаточной степенью детализации.

С помощью сочетания ряда методов можно осуществить более глубокий контроль (как правило, на земле), однако это часто требует специальных условий и продолжительного времени.

Итак, для диагностики АТ целесообразно использовать параметры, обладающие максимальной информативностью, дополняющие и уточняющие друг друга.

Таким образом, задача оценки информационного потенциала параметров, используемых для целей диагностики АТ, является на сегодняшний день очень актуальной.

2. Анализ методов технической диагностики авиационной техники

Сравнительный анализ информативности методов диагностики АТ, представленный ниже, основан на общепризнанном подходе, выдвинутом М. Бонгардом о величине функции вероятности приближения к цели ("адресу" дефекта) при регистрации значений параметра. Правда, каких-либо количественных характеристик упомянутой функции в этой главе пособия не приводится. Эта взаимосвязь (информативность - метод) подтверждена практикой эксплуатации, где косвенным критерием информативности служит безошибочность диагноза при проявлении признака, регистрируемого данным методом.

2.1 Тепловые методы и их эффективность

Одними из наиболее информативных методов оценки состояния АТ являются методы контроля тепловых параметров. В настоящее время их использование в полете ограничивается контролем температуры в различных точках, например проточной части двигателя, и сравнением ее с допустимыми значениями. Большее развитие тепловые методы нашли при стендовых испытаниях ГТД. Основным достоинством их является возможность получения информации без существенной разборки авиадвигателя. При термометрировании рабочих лопаток турбины на них устанавливают термопары и общий токосъемник. Это влечет за собой неудобства для формирования диагноза вследствие ограниченного количества точек контроля.

Методы бесконтактного термометрирования обладают некоторыми преимуществами. Объектами бесконтактной термометрической диагностики могут являться как двигатель в целом, так и отдельные его агрегаты и детали. Система контроля преобразует инфракрасное изображение в видимое так, чтобы распределение видимой яркости было пропорционально инфракрасной яркости объекта, т.е. пространственному распределению температуры T(y,z) или коэффициента излучения (y,z). Это преобразование обычно осуществляют путем последовательного анализа различных точек объекта элементарным радиометрическим полем зрения, образующем на теле объекта площадь S . Мгновенное поле выбирают малым и быстро перемещают его по объекту. Распределение инфракрасной яркости L(y,z) объекта при сканировании его площадкой S формирует в приемнике сигнал S(t), амплитуда которого изменяется во времени в соответcтвии с изменением визируемой яркости. Сигнал S(t) после усиления преобразуется в видимый сигнал. Воспроизведение инфракрасного изображения путем строчного анализа позволяет получить тепловую карту наблюдаемой зоны (связь между теплообменом в среде и ее строением).

Одним из информативных методов обнаружения дефектов труднодоступных узлов ГТД является метод инфракрасной термографии. Его разделяют на активный и пассивный методы. Активный предполагает предварительный нагрев объекта. Наблюдения тепловых явлений на поверхности в результате распространения тепла по материалу могут дать информацию о его внутренней структуре. Используемый при этом источник тепла служит для создания в материале т.н. термоудара, а приемная термографическая система анализирует рассеяние и распространение тепловых волн.

Ограничения сферы применения метода связаны с тем, что наблюдения могут проводиться только в переходном режиме, когда определяются относительные скорости распространения теплового потока внутри материала. По достижении температурного равновесия тепловые контрасты уже не наблюдаются. К тому же такие объекты, как авиационные ГТД, имеют большую контролируемую поверхность, и осуществить их равномерный нагрев представляется затруднительным. Это касается и других функциональных систем самолета - гидравлической, топливной и др. Сложности в применении метода объясняются тем, что он зависит от большого числа параметров, которые должны быть учтены для каждого применения. К ним относятся:

· коэффициент излучения испытуемого материала;

· тип инфракрасного приемного устройства;

· поле зрения и размещение приемного устройства;

· скорость перемещения приемного устройства относительно объекта;

· природа и интенсивность нагрева (с помощью обычных источников или лазеров);

· фокусировка теплового потока;

· расстояние между источником тепла и испытуемым объектом;

· расстояние между источником тепла и инфракрасной приемной системой.

Существенным недостатком активного метода при оценке состояния функциональных систем ЛА и АД можно считать возможность контроля только тех деталей, которые находятся на его поверхности (корпусе). Доступ к остальным агрегатам требует их детальной разборки.

Более широкими возможностями в этом отношении обладает пассивный метод. Он заключается в использовании естественного тепла, выделяющегося в процессе функционирования ГТД, и в наблюдении с помощью пассивного приемного инфракрасного устройства распределения температур во времени и в пространстве. Сравнение с идеальной моделью рассеяния тепла позволяет определить все отклонения температуры, важные для процесса функционирования объекта. Разность температур отдельных зон характеризует условия теплоотвода от них, и, тем самым, физико-химический состав, толщину, структуру, наличие дефектов и т.д. Пассивный метод представляется более перспективным и может быть использован для определения наиболее информативных точек на поверхности двигателя с целью установки в этих зонах встроенной системы контроля (термодатчиков).

Тепловая диагностика предполагает использование широкого спектра дорогостоящих средств. При визуальном контроле для параллельного съема информации используют электронно-оптические преобразователи - эвапографы, эджеографы, приборы с жидкими кристаллами и фоточувствительными пленками, тепловизоры (рис. 3.) и т.п.

Рис. 3. Тепловизор TVS-200

Несмотря на это, бесконтактная тепловая диагностика является весьма перспективной в силу высокой информативности. Важно, что разработанные средства диагностики позволяют впрямую обнаруживать дефекты и прогнозировать их развитие в процессе испытаний ЛА и АД. Существующие методы обработки инфракрасного термометрирования дают возможность прогнозировать конкретные неисправности.

2.2 Возможности виброакустических методов оценки состояния авиационной техники

Виброакустическая диагностика АТ также в достаточной мере информативна. Она базируется на общих принципах распознавания состояний технических систем по исходной информации, содержащейся в виброакустическом сигнале. В качестве диагностических признаков здесь используют характеристики виброакустического сигнала, сопровождающие функционирование ГТД. Как правило, уровень вибраций двигателя контролируется с помощью вибропреобразователей, которые сигнализируют о возможной неисправности в полете, но не позволяют определить конкретное место ее развития. При стендовых испытаниях для получения информации о вибронапряженности и колебаниях лопаток рабочих колес компрессора используют бесконтактные дискретно-фазовые методы. Их применение требует жесткого закрепления двигателя на стенде и установки на корпусе и роторе компрессора специальных вибропреобразователей. В настоящее время разрабатываются перспективные устройства и методы виброакустического анализа, не дошедшие пока до стадии массового эксплуатационного применения. Как упоминалось, голографические и акустические методы могут позволить определить наиболее информативные точки на корпусе двигателя (амплитуда, частота и фазовые характеристики вибрации, которые связаны с состоянием отдельных узлов и деталей). При обработке информации совокупность упомянутых параметров связывают с состоянием объекта W(t) в момент (период) времени t. При этом множество возможных состояний объекта делят на два подмножества. Подмножество W* представляет собой совокупность работоспособных состояний, которые обладают запасом работоспособности, определяющим близость объекта к предельно допустимому состоянию. Подмножество W** включает все состояния, соответствующие появлению отказов в работе двигателя.

Для постановки диагноза все возможные состояния разбиваются на некоторое число классов Wi, i=1,2, … n , подлежащих распознаванию. Но если число классов в подмножестве W** определяется числом возможных отказов, то практически осуществить классификацию по степени работоспособности в подмножестве W* не представляется возможным в силу непрерывности изменения этих состояний в пространстве диагностических признаков и времени. Кроме того, такая классификация затруднена многопараметричностью объекта, каким и является газотурбинный двигатель.

Если дефект сопровождается повышенной виброактивностью, то важным здесь является локализация источников повышенного уровня колебательной энергии. При этом различают два возможных варианта: источники шума независимы либо статистически связаны. Уровень трудностей, обусловленный необходимостью разделения влияния источников, в значительной степени снижает информативность вибродиагностики ГТД.

К мерам, повышающим ее информативность относят следующие:

· детальный опыт доводки в эксплуатацию двигателя с целью выявления наиболее уязвимых мест, четкое разбиение на конечное множество классов состояний, подлежащих распознаванию - W = {W1 , W2 , … , Wm};

· обоснование эталонных значений вибропараметров;

· выбор средств измерения и мест их размещения на основе протекающих в ГТД физических процессов;

· локализация источников излучения повышенной колебательной энергии в исследуемом двигателе;

· определение динамических характеристик отдельных узлов, агрегатов и двигателя в целом для построения диагностической модели;

· разработка алгоритмов определения текущего состояния ГТД.

Важным моментом является формирование эталонов, представляющих собой усредненные для данного класса значения признаков. С помощью набора классифицирующих функций производится распознавание параметров виброакустического сигнала. В подсистеме принятия решения определяется фактическое состояние объекта контроля по текущим значениям параметров, которые могут быть использованы в качестве исходных при построении алгоритмов прогноза возможных отказов.

Несмотря на перечисленные меры, все же значительные трудности вызывает решение задачи локализации источников излучения повышенной виброактивности.

В последнее время при вибродиагностике ГТД начал находить применение метод оптической голографии, обладающий повышенной информативностью. Условием его эффективного использования также является создание эталонов (библиотеки вибропортретов дефектных состояний ГТД). Сначала получают эталонный вибропортрет исправного двигателя, а затем, вводя известные характерные дефекты, получают вибропортреты, соответствующие конкретным дефектным состояниям. Сравнение последних с эталонным может позволить определить информативные точки на поверхности двигателя, чувствительные к определенным дефектам. Для постановки диагноза достаточно идентифицировать вибропортрет исследуемого двигателя с набором, имеющимся в библиотеке. Однако этот метод пока не достаточно практически отработан и обеспечен аппаратурой.

Менее информативной, но более доступной считается диагностика АТ на основе построения диагностических моделей, т.е. связей между пространством состояний и пространством диагностических признаков. При этом не придается значения, в какой форме представлена эта связь.

Считают, что диагностическая модель отвечает своему назначению, если она позволяет выполнить следующие условия:

· сформулировать принципы разбиения множества W на два подмножества - работоспособных W* и неработоспособных W** состояний;

· определить критерий для оценки степени работоспособности объекта и его принадлежности к одному из классов в подмножестве W*;

· установить признаки возникших отказов (различить состояния в подмножестве W**).

В качестве диагностических моделей обычно используют дифференциальные и алгебраические уравнения, логические соотношения, матрицы узловых проводимостей, функциональные, структурные, регрессионные и другие модели, позволяющие связать параметры технического состояния с виброакустическим состоянием объекта. К основным типам моделей можно отнести: структурно-следственные; динамические; регрессионные.

Структурно-следственная модель диагностируемого объекта создается на основе инженерного изучения его устройства и функционирования, статистического анализа показателей надежности и диагностических параметров. Она должна давать наглядное представление о наиболее уязвимых и ответственных элементах, а также связи структурных параметров с диагностическими признаками. Эту задачу необходимо решать при построении модели любого типа. Она решается на основе статистического анализа, что требует значительных затрат времени.

При построении динамической модели диагностирования объект рассматривают как многомерную систему с р входами и n выходами. Уравнение связи вектора входных воздействий

X(t) = {х1(t) , х2(t) , …. , хn(t)}

и вектора выходных сигналов

Y(t) = { y1(t) , y2(t) , …. , yn(t)}

записывают в операторном виде

где В - оператор системы, содержащий в неявном виде данные о параметрах технического состояния Zi системы.

На рис. 4. показана простейшая модель "черного ящика".

Изменение параметров технического состояния может вызвать изменение оператора при неизменном X(t).

В качестве критерия работоспособности динамического звена принимают степень соответствия действительного оператора Bi оператору нормального функционирования механизма Bio, которую можно оценить значением невязки в соответствии со схемой, приведенной на риc. 5., где X - возмущающее воздействие, Yо - реакция номинальной модели исследуемого динамического звена, Y - невязка, U - диагностический признак.

Рис. 4. Модель "черного ящика"

Рис. 5. Простейшая схема динамического звена

1 - динамическое звено объекта контроля;

2 - формирующее звено;

3 - номинальная математическая модель

С помощью уравнений идентификации можно сформировать модель " черного ящика " , диагностические признаки, представляющие собой значения собственных частот, декремент колебаний и т.д. Однако их конкретизация зависит от понимания физики процессов, порождаемых развивающимся дефектом. К этому можно добавить, что использование сложного математического аппарата, необходимого при построении моделей данного типа, для решения практических задач часто представляется затруднительным.

Наиболее эффективным считают метод построения регрессионной модели, базирующийся на использовании математического аппарата планирования эксперимента. С помощью этого метода ищут "характерный" диагностический признак, однозначно связанный с каким- либо параметром технического состояния. Задача моделирования сводится к нахождению коэффициентов регрессии и оценке адекватности модели в соответствии с определенными правилами. В процессе обработки результатов эксперимента оценивают следующие величины: дисперсию функции отклика по результатам параллельных опытов; дисперсию воспроизводимости функции отклика по результатам всех опытов; однороднородность дисперсий по F - критерию Фишера (коэффициенты регрессии; доверительный интервал коэффициентов регрессии; адекватность модели).

В результате анализа определяют характерный диагностический признак, являющийся функцией одного аргумента. Следует отметить, что несмотря на значительный уровень развития вибрационных диагностических моделей и алгоритмов построения диагностических процессов в целом, в большинстве случаев получают оценки состояния типа "норма - не норма", что в ряде случаев является недостаточным.

При решении задач локализации источников вибрации (повышения информативности), а также установления связей между структурными параметрами и параметрами сигнала, важное место отводится расшифровке последнего. Виброакустический сигнал любого механизма имеет сложную структуру, зависящую от динамики функционирования и набора комплектующих узлов. В настоящее время получен ряд зависимостей изменения характеристик виброакустического сигнала от возникающих дефектов типовых элементов различных механизмов, в том числе и применяющихся в авиационных двигателях. Спектры вибрации измеряют на нескольких режимах работы ГТД для более надежного сопоставления расчетных частот с реальным частотным спектром вибрации. При обнаружении в некоторой полосе частот источника интенсивной вибрации место его расположения определяют по пространственному распределению уровня вибраций конструкции.

Для некоторых рабочих процессов была найдена определенная связь режимных и виброакустических параметров. Например, в компрессорах вихревой шум пропорционален 3,5-5-й степени относительной скорости потока среды на лопатке, а сплошной шум подшипников качения в значительно меньшей степени зависит от нагрузки и частоты вращения ротора. Поэтому, если в данном механизме при изменении скоростного режима интенсивность шума нарастает пропорционально, например, 4-й степени частоты вращения ротора, то можно сделать вывод о его аэродинамическом происхождении. В ряде случаев для выявления источников определяют форму колебаний, т.е. измеряют амплитуду и фазу, а также распределение возбуждающих сил.

Таким образом, методы виброакустической диагностики ГТД базируются на общих принципах диагностики технических систем по косвенным (в целом малоинформативным) параметрам. К тому же область их применения ограничена возможностью доступа к двигателю, а также несовершенством средств диагностирования и математических моделей, связывающих структурные параметры с диагностическими признаками. Тем не менее в ряде случаев можно получить количественную оценку запаса работоспособности узлов двигателя по результатам измерения виброакустических сигналов, что позволяет прогнозировать величины остаточных ресурсов элементов ГТД.

2.3 Эффективность трибодиагностики элементов ГТД

Процесс разрушения изнашиваемых деталей, как правило, начинается с разрушения поверхностного слоя материала под действием высоких динамических напряжений, что проявляется в виде отрывов частиц материала. Это приводит к повышенной концентрации напряжений в местах отрыва и как следствие к дальнейшему развитию процесса разрушения. При этом продукты износа уносятся маслом, циркулирующим в двигателе. Их наличие и накопление могут служить сигналом о возникновении неисправности.

Масло в данном случае является носителем информации о состоянии трущихся пар. Как показывает опыт, отрезок времени от начала процесса разрушения поверхностного слоя до момента полного разрушения детали, как правило, достаточно велик, что дает возможность обнаруживать неисправности уже на начальном этапе процесса изнашивания.

Количество и форма продуктов износа, поступающих в масло, зависит от скорости накопления частиц износа.

Наиболее распространенными методами трибодиагностики являются: магнитный, спектрального анализа, колориметрический, феррографический, метод радиоактивных изотопов. Каждый из них более информативен, чем методы вибродиагностики.

Магнитный метод (в ГА применяется прибор ПКМ, ранее ПОЖ-М). Метод основан на измерении силы взаимодействия ферромагнитных частиц масла с искусственно созданным внешним магнитным полем. Поскольку количество ферромагнитных металлов в работавшем масле двигателей обычно существенно больше, чем других продуктов износа, то их определение может служить интегральной оценкой степени износа трущихся пар двигателя.

Электромагнитный метод контроля, как разновидность магнитного метода, основан на взаимодействии переменного магнитного поля катушки индуктивности с электромагнитным полем, возникающим от вихревых токов металлических частиц в работающем масле. К недостаткам метода следует отнести малую чувствительность анализаторов, их подверженность влиянию внешних переменных полей, а также невозможность определения немагнитных частиц износа.

Эмиссионно-спектральный метод (в ГА применяются установки типа МФС, МОА, Spektrooil). Этот метод использует явление свечения газа исследуемого вещества в результате нагревания его до температуры свыше 10000С. При таких температурах энергия движения частиц газа такова, что при их столкновении происходят процессы диссоциации и ионизации, в результате которых, наряду с атомами и молекулами, в газе образуются свободные электрические заряды-ионы и электроны. Нагретый, частично ионизированный, проводящий электрический ток газ-плазма излучает электромагнитные колебания в оптическом диапазоне спектра. Существенной составляющей этого излучения являются линейчатые спектры атомов, в которых каждому элементу соответствует своя длина волны излучения определенной интенсивности. Исследуя спектр, можно определить химический состав образующего его газа, и, следовательно, состав анализируемой пробы.

Интенсивность аналитических спектральных линий (мощность излучения единицы объема плазмы) пропорционально связана с концентрацией соответствующих элементов в пробе. Установка позволяет определить не только качественный, но и количественный состав пробы. Для проведения количественного анализа необходимо выбрать адекватную модель спектроаналитического процесса (связь между сигналом и концентрацией исследуемого элемента) и провести с ее помощью градуирование установки.

Рентгеноспектральный метод (в ГА применяются установки типа БАРС-3, "СПЕКТРОСКАН", БРА-17, "ПРИЗМА"). Метод основан на регистрации длины волны и интенсивности характеристического флуоресцентного излучения химических элементов, входящих в состав "сухой" масляной пробы. Характеристическое излучение - это квантовое излучение с линейчатым (дискретным) спектром, возникающее при изменении энергетического состояния атома. Длина волны характеристического излучения зависит от атомного номера химического элемента и уменьшается по мере его возрастания. Явление флуоресценции связано с переходом атомов, молекул или ионов из возбужденных состояний в нормальное состояние под действием характеристического излучения. Излучение возбуждается рентгеновскими лучами, направленными на масляную пробу. Характеристическое излучение определяемых элементов выделяется из вторичного излучения образца кристалл-анализатором и регистрируется с помощью шести селективных рентгеновских фильтров и шести пропорциональных счетчиков ("Спектроскан").

авиационный диагностика виброакустический технический

Рис. 6. Энергодисперсионный анализатор "Спектроскан Макс"

Анализ начинается сустановки анализируемой пробы в пробо-загрузочное устройство спектрометра и продолжается от 10 до 1000 сек. в зависимости от анализируемого материала и требуемой точности анализа. Кванты излучения преобразуются в импульсы напряжения, скорость поступления которых измеряется и выводится на дисплей, и сохраняются в памяти компьютера, значения распечатываются на принтере. Спектрометр полностью управляется компьютером.

Рис. 7. Рентгеноспектральный анализатор "ПРИЗМА"

Сцинтилляционный метод. Метод регистрации заряженных частиц с помощью счета вспышек света, возникающих при попадании этих частиц на экран из сернистого цинка (ZnS), является одним из первых методов регистрации ядерных излучений. Еще в 1903 г. Крукс и другие ученые показали, что если рассматривать экран из сернистого цинка, облучаемый частицами через увеличительное стекло в темном помещении, то на нем можно заметить появление отдельных кратковременных вспышек света -- сцинтилляций. Было установлено, что каждая из этих сцинтилляций создается отдельной частицей, попадающей на экран. Круксом был построен простой прибор, названный спинтарископом Крукса, предназначенный для счета частиц. Визуальный метод сцинтилляций был использован в дальнейшем в основном для регистрации частиц и протонов с энергией в несколько миллионов электрон-вольт. Отдельные быстрые электроны регистрировать не удалось, так как они вызывают очень слабые сцинтилляции. Иногда при облучении электронами сернисто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов. Гамма-лучи никаких вспышек на экране не вызывают, создавая лишь общее свечение. Это позволяет регистрировать частицы в присутствии сильного излучения. Визуальный метод сцинтилляций позволяет регистрировать очень небольшое число частиц в единицу времени. Наилучшие условия для счета сцинтилляций получаются тогда, когда их число лежит между 20 и 40 в минуту. Конечно, метод сцинтилляций является субъективным, и результаты в той или иной мере зависят от индивидуальных качеств экспериментатора. Несмотря на недостатки, визуальный метод сцинтилляций сыграл огромную роль в развитии ядерной и атомной физики. С помощью него Резерфорд регистрировал частицы при их рассеянии на атомах. Именно эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их частицами, т.е. первое искусственное расщепление ядра.

Сцинтилляционный метод регистрации возродился в конце сороковых годов XX в. на новой основе. К этому времени были разработаны фотоэлектронные умножители (ФЭУ), позволяющие регистрировать очень слабые вспышки света. Были созданы сцинтилляционные счетчики, с помощью которых можно увеличить скорость счета в 108 и даже более раз по сравнению с визуальным методом, а также можно регистрировать и анализировать по энергии как заряженные частицы, так и нейтроны и гамма-лучи.

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фосфора с ФЭУ производится через специальную оптическую систему (светопровод). Принцип работы сцинтилляционного счетчика состоит в следующем. Заряженная частица, попадая в сцинтиллятор, производит ионизацию и возбуждение его молекул, которые через очень короткое время (10-6--10-9 сек.) переходят в стабильное состояние, испуская фотоны. Возникает вспышка света (сцинтилляция). Некоторая часть фотонов попадает на фотокатод ФЭУ и выбивает из него фотоэлектроны. Последние под действием приложенного к ФЭУ напряжения фокусируются и направляются на первый электрод (динод) электронного умножителя. Далее в результате вторичной электронной эмиссии число электронов лавинообразно увеличивается, и на выходе ФЭУ появляется импульс напряжения, который затем уже усиливается и регистрируется радиотехнической аппаратурой. Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ. В качестве фосфоров используются: органические кристаллы, жидкие органические сцинтилляторы, твердые пластмассовые сцинтилляторы, газовые сцинтилляторы. Основными характеристиками сцинтилляторов являются: световой выход, спектральный состав излучения и длительность сцинтилляций. При прохождении заряженной частицы через сцинтиллятор в нем возникает некоторое число фотонов с той или иной энергией. Часть этих фотонов будет поглощена в объеме самого сцинтиллятора, и вместо них будут испущены другие фотоны с несколько меньшей энергией. В результате процессов реабсорбции наружу будут выходить фотоны, спектр которых характерен для данного сцинтиллятора. Очень важно, чтобы спектр фотонов, выходящих из сцинтиллятора, совпадал или хотя бы частично перекрывался со спектральной характеристикой ФЭУ. Степень перекрытия внешнего спектра сцинтилляции со спектральной характеристикой данного ФЭУ определяется коэффициентом согласования.

ОАО "НПО "Сатурн" стало первым российским предприятием, которое вложило серьезные финансовые средства в разработку технологии диагностирования по результатам сцинтилляционных измерений ГТД серий Д-30КП/КУ/КУ-154. В рамках бюллетеней 1756БД-Г и 1772БД-Г специалистами разработан экспрессный количественный способ получения максимально возможной диагностической информации о параметрах частиц износа, находящихся в масле, в смывах с маслофильтра, магнитных пробок, фильтров-сигнализаторов и др. Использование сцинтилляционного анализатора масла позволило в диагностической авиационной практике оперативно оценивать не только общее техническое состояние двигателя по критерию "исправен" - "не исправен", но и раздельно оценивать техническое состояние подшипников трансмиссии и коробок приводов авиадвигателей.

Колориметрический метод (в ГА используются приборы типа КФК-2, ФЭК-М). В основу метода положен закон Ламберта-Бера и принцип измерения коэффициента пропускания света через исследуемую среду. На фотоприемник поочередно направляются световые потоки: полный и прошедший через эталонную и затем масляную среду, далее определяется отношение этих потоков. В качестве эталона используется либо дистиллированная вода, либо масло, соответствующее нормам ТУ. По значениям оптико-цветовых характеристик исследуемых проб масла и судят о состоянии узлов трения, омываемых маслом.

Отношение световых потоков, есть коэффициент пропускания или степень прозрачности исследуемого раствора

Оптическая плотность (D) определяется по формуле:

Органолептический метод. При этом методе степень частиц износа выявляется визуально или с использованием каких-либо устройств и приспособлений (магнитные пробки, фильтры, сигнализаторы). Как известно , на двигателях применяются сигнализаторы стружки различного типа (электронные, электромеханические и др.). Эти сигнализаторы имеют один принципиальный недостаток, который связан с возможностью ложного срабатывания из-за накопления смолистых веществ в масле и различного рода посторонних загрязнений, не имеющих отношения к развитию дефекта. Сигнализаторы только фиксируют наличие износа, но не позволяют отслеживать скорость процесса накопления стружки в масле. Таким образом, этот метод недостаточно информативен с точки зрения точности выявления морфологии частиц износа.

Феррографический метод (в ГА используются феррографы типа PF, DR в основном импортного производства). Феррография - это метод микроскопического анализа частиц, отделенных от жидкостей. Метод обладает рядом преимуществ по сравнению с методами, упомянутыми выше, главным из которых является низкая погрешность измерений.

Для оценки состояния трущихся пар пользуются двумя типами феррографов. Это аналитический феррограф и прямопоказывающий феррограф. Последний оценивает массовую концентрацию примесей в пробе; с помощью аналитического феррографа изучаются морфологические признаки частиц износа с целью установления "адреса" дефекта.

Частицы, которые вместе с маслом стекают по наклонной поверхности пластины, изготовленной из кварцевого стекла, подвергаются воздействию градуированного магнитного поля, под воздействием которого Fe-частицы оседают в порядке убывания своего размера. Минимальный размер частиц - 3,0-5,0 мкм.

Концентрация частиц "улавливается" в двух областях: на входе в зону отложения и на расстоянии 4 мм от этой зоны. В этих точках производится измерение интенсивности прохождения света через отложения, которая пропорциональна концентрации частиц в пробе.

Метод радиоактивных изотопов

Использование метода радиоактивных изотопов заключается в установке на двигатель активированной детали, износ которой требуется определить. В процессе работы двигателя радиоактивные частицы вместе с остальными продуктами износа попадают в масло. Степень износа детали определяют на основе измерения радиоактивности масла. Метод высоко информативен, т.к. впрямую указывает "адрес" дефекта. Основными способами активации масла являются: установка радиоактивных вставок на заданных участках поверхности детали; облучение деталей нейтронами; введение изотопов в металлы во время их плавки; электролитическое покрытие деталей радиоактивным элементом.

Применение радиоактивных изотопов для исследования износа обладает рядом преимуществ. Этот метод обладает высокой чувствительностью и возможностью непрерывной регистрации измерений непосредственно при работе двигателя. С его помощью можно определять износ заданного участка детали. Кроме того, метод позволяет исследовать ряд вопросов, связанных с работой и износом двигателя: приработку деталей при пусках, характер изнашивания (коррозионный, механический и т.п.), расход масла и др.

Однако определение износа деталей методом радиоактивных изотопов представляет известную сложность. К этому необходимо добавить, что применение метода ограничено необходимостью специальной подготовки двигателя перед испытаниями, а также биологической защиты обслуживающего персонала от излучения. Метод позволяет оценивать износ только одной детали (или группы деталей). Одновременное раздельное определение износа нескольких деталей весьма сложно, т.к. требует применения изотопов с различными энергиями излучения и специальной аппаратуры для раздельной регистрации этих излучений.

2.4 Эффективность диагностики жидкостных систем ЛА и АД

При диагностировании жидкостных систем АТ в условиях эксплуатации используют переносные и встроенные средства. Большинство параметров, характеризующих состояние жидкостных систем, являются неэлектрическими величинами (давление, температура, расход рабочей жидкости и др.). Для удобства измерения и обработки диагностических параметров необходима их трансформация в электрические сигналы.

Для этого используются различные преобразователи, которые классифицируются по своему принципу действия следующим образом, причем их функциональные возможности измерения параметров отмечены в скобках:

· ультразвуковые (расход, параметры рабочей жидкости);

· пьезоэлектрические (пульсации давления, вибрации);

· индукционные (частота вращения);

· трансформаторные (перемещение, давление, расход);

· фотоэлектрические (частота вращения, интенсивность излучения);

· индуктивные (давление, линейные перемещения);

· термопары, термосопротивление (температура);

· тензорезисторные (относительные перемещения);

· потенциометрические (давление, линейные и угловые скорости) и др.

Приемлемую точность измерения расхода имеют турбинные расходомеры типа РТСМ. В них измеряемые объемы жидкости отсекаются вращающейся крыльчаткой, а частота ее вращения свидетельствует о значении объемного расхода.

Простыми и надежными приборами для измерения избыточного давления являются пружинные манометры, для степени разряжения - т.н. вакуумметры. В качестве чувствительных элементов в этих приборах используются различного рода мембраны, сильфоны, сельсины и т.п.

Рис. 8. Течеискатель ИВУ-002:

1 - электронный блок-преобразователь;

2 - ультразвуковой щуп с кабелем;

3 - программное обеспечение;

4 - соединительный шнур подзаряда аккумулятора;

5 - аккумулятор; 6- футляр

Для регистрации утечек рабочей жидкости применяются регистраторы особого типа, называемые термисторами (полупроводниковые микротермосопротивления). Термисторы применяют для оценки внутренней негерметичности жидкостных систем. Они устанавливаются в сливные магистрали. Причиной внутренней негерметичности является обычно износ золотников, уплотнительных втулок и других элементов в агрегатах жидкостных систем, образующих пары трения. Пульсации давлений жидкости передаются на корпус агрегатов с ультразвуковой частотой. Наибольшая амплитуда колебаний возникает в том месте корпуса агрегата, где расположены изношенные пары трения. Для измерения колебаний и преобразования их в электрический сигнал в ГА применяют ультразвуковые индикаторы типа ТУЗ-1, ИКУ-1, ИВУ-002/5-МП, Т-2001 и др., называемые течеискателями (рис. 8). Метод течеискания достаточно информативен, однако заключение о неисправности агрегатов жидкостно-газовых систем АТ делается на основе косвенных признаков, что в некоторой степени снижает информативность.

2.5 Эффективность диагностики ГТД по термогазодинамическим параметрам

В соответствии с общепринятыми концепциями к термогазодинамическим параметрам относят: давление, температуру, отношение давлений и температур, скорость течения, расход топлива и масла, проходные площади сечений проточной части, тягу, а также частоту вращения роторов. Информативность термогазодинамической диагностики ГТД невысока.

Общие подходы здесь не отличаются от подходов, применяемых при вибро- или модельном диагностировании, рассмотренных выше. Имеются лишь некоторые специфические отличия. Обычно при термогазодинамическом диагностировании ГТД применяется метод математического моделирования "поведения" вышеперечисленных параметров в процессе работы двигателя. Различают детерминированные, вероятностные и комбинированные модели ГТД. В детерминированных моделях все взаимосвязи, переменные и константы задаются точно (что весьма сложно при профилактике отказов). Данное условие обеспечивает возможность однозначного определения результирующей функции. В вероятностных моделях задаются соответствующие законы распределения случайных величин, что приводит к вероятностной оценке этой функции. Чаще применяют детерминированные модели. Здесь признаками состояния двигателя могут быть: тяга R, расход топлива Cr , температура газов перед (Т) или за турбиной (Тг), параметры рабочего тела по тракту, параметры топливной, масляной систем и т.д. Примерами возможных неисправностей могут служить: прогары лопаток турбины, жаровой части камер сгорания, деформация элементов проточной части и т.п. Решения принимают по критическим отклонениям термогазодинамических параметров.

Изменение температуры газа за турбиной сравнивают с эталонной математической моделью. Эталонная модель строится по исходным формулярным данным двигателя. Температура контролируется на взлетном режиме, которому соответствует контрольная температура за турбиной. В некоторых случаях температуру Т, а также параметры Тн и Рн используют для подсчета тяги двигателя и сравнивают ее с той тягой, которая должна быть в конкретно заданных условиях.

Определенные возможности заложены в диагностический параметр "расход топлива". Опыт показывает, что повреждение проточной части ГТД увеличивает расход топлива на 120-150 кг/ч при одновременном изменении других термодинамических параметров. Расход топлива достаточно хорошо отражает состояние камер сгорания и сопловых аппаратов турбин. Однако точное измерение расхода затруднено из-за погрешностей расходомеров, вызванных необходимостью учета плотности керосина при разных температурах.

В определенных условиях диагностику ГТД можно осуществлять и по давлению топлива перед форсунками Рф, но и здесь погрешности измерений могут играть решающую роль.

Для минимизации погрешностей оценки состояния ГТД по результатам измеренных термогазодинамических параметров, значения параметров приводят к стандартным условиям, а их измерение должно проводиться на одних и тех же высотах и режимах работы двигателя.

Результаты исследований в области термогазодинамической диагностики ГТД позволили установить, что самым чувствительным и информативным показателем состояния проточной части двигателей является адиабатический КПД турбины т. Конечно, непосредственно замерить т невозможно, однако, его можно выразить через частоту вращения роторов, степень повышения давления к и температуру газов перед турбиной Тг*. Эта зависимость будет эмпирической и специфичной по отношению к данному типу двигателя.

Детерминированные модели диагностирования ГТД могут выражаться через систему уравнений состояния двигателя, решив которую можно сформировать диагноз, осуществить прогноз и дать рекомендации по предупреждению или устранению возможного отказа. Диагностические уравнения представляют собой конечное множество выражений, построенных для приращения расхода воздуха, температуры газа перед турбиной, удельного расхода и других термогазодинамических параметров. В правой части этих уравнений содержатся отклонения параметров, которые определяют путем сравнения текущих значений с эталонными значениями (при определенном режиме работы двигателя).

Наиболее ответственным этапом термогазодинамического диагностирования ГТД является составление диагностических уравнений. Число диагностических уравнений определяется классами возможных состояний ГТД.

В последнее время для диагностики ГТД предлагается использовать комплексные параметры, которые в аналитической форме связывают между собой несколько параметров и, тем самым, наиболее полно характеризуют рабочие процессы, происходящие в двигателе. Так, для диагностирования ТВД в ряде предприятий используют отношение температуры газов за турбинной Тг к давлению масла в измерителе крутящего момента Рикм. При этом в качестве критерия оценки состояния двигателя по комплексному параметру используют относительное отклонение контролируемого параметра от эталонного:

К=Взам-Вэ,

где Взам = Тг/Рикм - комплексный параметр, приведенный к стандартным атмосферным условиям. Использование данной величины для контроля технического состояния ТВД в процессе проведения стендовых испытаний, а также в условиях эксплуатации оказалось эффективным для оценки работоспособности двигателя.

2.6 Методы диагностики проточной части ГТД

Наряду с описанными выше методами контроля и диагностики АТ наиболее общую и оперативную информацию о состоянии ответственных узлов и деталей двигателя, таких как лопатки компрессора и турбины, камеры сгорания, диски, сварные швы корпусов и т.д., дают оптические методы контроля с использованием бороскопов, фиброскопов и эндоскопов. Этими приборами успешно выявляется обширная группа дефектов типа: трещин, прогаров, короблений (нарушение макрогеометрии деталей), коррозии, эрозии, выработки контактных поверхностей, износа элементов лабиринтных уплотнений, нагарообразования и др.

На сегодняшний день на российском рынке предлагают свою продукцию ряд отечественных и зарубежных фирм - изготовителей эндоскопов: "Интек", "Карл Шторц", "Намикон", "Олимпас", "Оптимед", "Рихард Вольф", "Мачида", "СиМТ", "Казанское оптико-механическое объединение", "Точприбор", "Эверест-ВИТ" и др. Существующие оптические приборы для обнаружения указанных дефектов условно можно разделить на три группы.

Первая группа приборов -- это прямые эндоскопы с линзовой оптикой, торцовым и боковым зрением, с прямыми и угловыми окулярами. Эти приборы различаются по диаметру и длине рабочей части. У них различные оптические характеристики и различная механизация. К этой группе относятся такие приборы, как Н-200, УСП-8М, РВП-491 и ряд других.

Эндоскопы предназначены для осмотра и выявления поверхностных дефектов (трещин, забоин, рисок и т.д.) на рабочих лопатках всех ступеней компрессора и турбины двигателей в эксплуатации. Конструкция прибора позволяет оператору, не меняя своего положения, осматривать все поверхности, расположенные вокруг рабочей части эндоскопа. При подготовке к работе прибор подключают к источнику электрического тока и вводят через смотровой лючок в корпусе в проточную часть двигателя.

Эндоскоп УСП-8М служит для осмотра и выявления дефектов на сопловом аппарате турбины первой ступени, форсунках и стенках камеры сгорания. Конструктивно он состоит из трубы с объективом, осветительным устройством и окуляра.

Эндоскоп РВП-491 предназначен для осмотра рабочих лопаток турбины и по конструкции аналогичен эндоскопу УСП-8М. Для фиксации объектива на определенном расстоянии от объекта, а также для удобства работы с прибором во время осмотра имеется упор, которым прибор устанавливается на кромку осматриваемой лопатки.

Ко второй группе приборов можно отнести эндоскопы с одним или несколькими подвижными звеньями, соединенными между собой универсальными оптическими шарнирами. Их отличительной чертой является возможность осмотра криволинейных каналов.

Эндоскоп Н-185 предназначен для обнаружения трещин на промежуточном кольце соплового аппарата первой ступени турбины двигателя косвенным методом, заключающемся в осмотре задней внутренней оболочки турбины с целью обнаружения на ней цветов побежалостей, образующихся от газов, выходящих из внутреннего контура двигателя через трещины (при наличии таковых) на промежуточном кольце соплового аппарата. Конструктивно прибор представляет собой трубу, состоящую из объективной части с поворотными и неподвижными звеньями ("коленами") основной, промежуточной, трех удлинительных труб и окуляра. На подвижном звене объективной части укреплено осветительное устройство. Все части прибора легко собираются и разбираются без применения инструмента. Эндоскоп H-170 предназначен для осмотра и выявления дефектов на сопловом аппарате первой ступени турбины, форсунках и деталях камеры сгорания. Прибор представляет собой довольно сложную шарнирно-линзовую систему, состоящую из головного звена с объективом и осветительным устройством, нескольких промежуточных звеньев и звена окуляра, соединенных между собой при помощи оптических шарниров. Благодаря большому числу степеней свободы прибор проникает через сложный криволинейный канал -- смотровые лючки в оболочках двигателя и кольцевую камеру сгорания, обеспечивая тем самым контроль нижней части соплового аппарата, форсуночной плиты и элементов камеры сгорания на двигателях, которые не имеют нижних лючков.

...

Подобные документы

    Общие принципы технической диагностики при ремонте авиационной техники. Применение технических средств измерений и физических методов контроля. Виды и классификация дефектов машин и их частей. Расчет оперативных показателей надежности воздушных судов.

    дипломная работа , добавлен 19.11.2015

    Технологии объективного контроля состояния авиационной техники. История развития CALS-технологии. Анализ вопросов эксплуатации гражданских самолетов и величины годового налета самолета. Контроль за состоянием бортовых систем пассажирского самолета.

    доклад , добавлен 15.09.2014

    Организация выполнения регламентных работ на авиационной технике, контроль их качества. Состав ремонтных работ, выполняемых в передвижных авторемонтных мастерских (ПАРМ). Подготовка ПАРМ к восстановлению авиационной техники. Планирование работы ПАРМ.

    дипломная работа , добавлен 29.10.2013

    Типы беспилотных летательных аппаратов. Применение инерциальных методов в навигации. Движение материальной точки в неинерциальной системе координат. Принцип силовой гироскопической стабилизации. Разработка новых гироскопических чувствительных элементов.

    реферат , добавлен 23.05.2014

    Анализ систем технической диагностики объектов железнодорожной инфраструктуры. Разработка организационной структуры регионального центра диагностики и мониторинга. Расчет и сравнение экономических затрат при использовании различных средств контроля.

    дипломная работа , добавлен 06.07.2012

    Отказ как непредусмотренное нарушение функционирования авиационной транспортной системы, его основные причины и предпосылки, источники угрозы. Роль и оценка человеческого фактора при авиакрушении. Неисправности по вине инженерно-технического персонала.

    презентация , добавлен 11.10.2015

    Анализ руководства по летной эксплуатации вертолетов с целью выявления ограничений, связанных с аэродинамикой. Характеристика летных ограничений, влияющих на безопасность полета, его особенности в турбулентной атмосфере. Модернизация авиационной техники.

    дипломная работа , добавлен 04.02.2016

    Требования и факторы, определяющие организацию инженерно-авиационной службы. Организационно-штатная структура части; основы подчинённости и управления. Обязанности должностных лиц авиации Российской Федерации в мирное время и при воздействии противника.

    презентация , добавлен 08.07.2014

    Диагностирование цилиндро-поршневой группы и газораспределительного механизма двигателя внутреннего сгорания, электрооборудования, микропроцессорных систем управления. Основные функции программы диагностики, функции кнопок меню информации по ремонту.

    лабораторная работа , добавлен 06.03.2010

    Рассмотрение летательного авиадвигателя как объекта технической эксплуатации. Характеристика контролепригодности и надежности. Система технического обслуживания и ремонта транспортных средств. Заправка летательных аппаратов горюче-смазочными материалами.

«Кафедра технической эксплуатации летательных аппаратов и авиационных двигателей О.Ф.Машошин ДИАГНОСТИКА АВИАЦИОННОЙ ТЕХНИКИ (информационные основы) Рекомендовано Учебнометодическим...»

-- [ Страница 1 ] --

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО

ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ»


Кафедра технической эксплуатации летательных аппаратов и авиационных двигателей О.Ф.Машошин

ДИАГНОСТИКА АВИАЦИОННОЙ ТЕХНИКИ

(информационные основы) Рекомендовано Учебнометодическим объединением вузов Российской Федерации по образованию в области эксплуатации авиационной и космической техники для межвузовского использования в качестве учебного пособия Москва - 2007 ББК 056 М38 Печатается по решению редакционно-издательского совета Московского государственного технического университета ГА Рецензенты: д-р техн. и экон. наук, проф. Е.Ю.Барзилович;

д-р техн. наук, проф. В.А.Пивоваров.

Машошин О.Ф.

М38 Диагностика авиационной техники. Учебное пособие. - М.: МГТУ ГА, 2007. – 141 с.

ISBN (978-5-86311-593-1) В учебном пособии рассматривается комплекс вопросов, связанных с теоретическими основами технической диагностики, с позиций информационного обеспечения процессов диагностирования летательных аппаратов и авиадвигателей.

На фоне рассмотрения классических трактовок и теоретических положений технической диагностики, в пособии изложены вопросы, связанные с информационным потенциалом, как контролируемых параметров, так и методов диагностики и выбора в первую очередь тех из них, которые обладают максимальной информативностью. Также значительное внимание уделено теории информации применительно к решению задач диагностики.

Пособие издается в соответствии с учебным планом и программой специальности 160901 по дисциплине «Диагностика авиационной техники»

для студентов дневного отделения IV и V курсов, а также может быть полезным для магистрантов и аспирантов, изучающих проблемы диагностики в авиации.

Рассмотрено и одобрено на заседаниях кафедры 06.03.07 г. и Методического совета 13.03.07 г.

© Московский государственный технический университет ГА, 2007

Предисловие Введение Словарь терминов и понятий Глава 1. Основы технической диагностики 13

1.1. Основные направления технической диагностики 13

1.2. Задачи технической ди

–  –  –

ПРЕДИСЛОВИЕ

Учебная дисциплина «Диагностика авиационной техники» является одной из основных для подготовки студентов Механического факультета.

Цель ее преподавания диктуется требованиями квалификационной характеристики студентов – выпускников указанной специальности по приобретению знаний и формированию умений в области управления техническим состоянием самолетов и двигателей ГА в процессе эксплуатации, позволяющие научно и технически обоснованно решать современные вопросы диагностики авиационной техники.

Следует отметить, что в представленном учебном пособии акцент сделан на информационную составляющую часть диагностики, ее основы. На суд читателя наряду с классическим подходом изложения материала предложен и нетрадиционный способ, раскрывающий как техническую сторону диагностики, так и философские воззрения, аспекты – суть формирования потока информации вообще и информационного обеспечения процессов диагностирования в частности.

Согласно Второму началу термодинамики, в окружающем нас мире любое состояние системы, получаемое от различных источников информации, стремится к дезорганизации, и в последствии является нестабильным и разрозненным. В связи с этим важно выявить и уяснить сущность понятия – «информационный потенциал», под которым понимается недоиспользованная возможность учета информационной значимости как объекта диагностики, методов диагностирования, так и контролируемых параметров любой технической системы, подверженной диагностированию.

Таким образом, в настоящем учебном пособии акцентировано внимание на формирование диагнозов с учетом ценности получаемой информации контролируемых параметров, т.е. недоиспользованного их информационного потенциала, что позволит внимательному читателю

–  –  –

ВВЕДЕНИЕ

Термин «ДИАГНОСТИКА» греческого происхождения (diagnostikos), состоящий из слов - dia (между, врозь, после, через, раз) и gnosis (знание).

Таким образом, слово diagnostikos можно трактовать, как способность распознавать. В античном мире диагностиками назывались люди, которые после битв на полях сражений подсчитывали количество убитых и раненых.

В эпоху Возрождения - диагностика уже медицинское понятие, означающее распознавание болезни. В XIX - ХХ вв. это понятие стало широко использоваться в философии, а затем и в психологии, медицине, технике и других областях. В общем смысле, диагностика особый вид познания, находящийся между научным знанием сущности и опознаванием какоголибо единичного явления. Результат такого познания - диагноз, т.е.

заключение о принадлежности сущности, выраженной в единичном явлении, к определенному установленному наукой классу.

В свою очередь, распознание - учение о методах и принципах распознавания болезней и о признаках, характеризующих те или иные заболевания. В широком смысле этого слова процесс распознавания используется во всех отраслях науки и техники, является одним из элементов познания материи, то есть позволяет определять природу явлений, веществ, материалов и конкретных предметов. С философской и логической точек зрения термин «диагностика» правомерно можно использовать в любых отраслях науки. Таким образом технической диагностикой называется наука о распознавании (отнесение к одному из возможных классов) состояния технической системы. При диагностировании объект устанавливается путем сопоставления знаний, накопленных наукой, о группе, классе соответствующих объектов.

Введем еще один термин – «индивидуальность». Индивидуальность – это неповторимость объекта, его тождественность, равенство с самим собой.

В природе нет, и не может быть двух тождественных друг другу объектов.

Индивидуальность объекта выражается в наличии у него неповторимой совокупности признаков, которых нет у другого подобного объекта. Такими признаками для предмета диагностики являются размеры, форма, цвет, вес, структура материала, рельеф поверхности и иные признаки. К примеру, для человека это особенности фигуры, строение головы, лица и конечностей, физиологические особенности организма, особенности психики, поведения, навыки и т.д. Для технических объектов – изменение физико-механических свойств, диагностических критериев, технических параметров в различных условиях функционирования.

Раз объекты материального мира индивидуальны, тождественны самим себе, то им, следовательно, присущи индивидуальные признаки и свойства. В свою очередь эти признаки объектов изменчивы и отображаются на других объектах. Значит отображения также являются индивидуальными, обладающие свойством изменчивости.

С другой стороны, все объекты материального мира подвергаются непрерывным изменениям (человек стареет, обувь изнашивается и т.д.). У одних эти изменения наступают быстро, у других - медленно, у одних изменения могут быть значительными, а у других – не столь значимыми.

Хотя объекты изменяются постоянно, но в течение определенного времени сохраняют наиболее устойчивую часть своих признаков, которые позволяют осуществить идентификацию. Здесь под идентификацией понимается отождествление между закономерностями проявляемых диагностических параметров и тем или иным состоянием объекта. При идентификации конкретного объекта чаще всего обращают внимание на пороговые значения каких–либо физических величин, при этом важную роль играют диагностические признаки, указывающие на изменение состояния объекта в процессе его распознавания. Свойство материальных объектов сохранять совокупность своих признаков несмотря на их изменения, называется относительной устойчивостью.

Необходимо отметить, что словари и энциклопедии все еще отождествляют диагностику и термин «диагноз» чаще с медицинской разновидностью распознавания, между тем, этот вид познания распространен в самых разнообразных областях научной и практической деятельности человека.

Диагностика, как научная дисциплина и как область научнопрактической деятельности, является социально обусловленной, изменяющейся в ходе исторического развития общества. Ее современное развитие в веке осуществляется в направлении расширения XXI возможностей более быстрого и точного приближения к цели, распознавания причин отклонений от норм технического объекта. В свою очередь, развитие диагностики характеризуется неравномерностью изменчивости ее отдельных сторон, а также влиянием друг на друга различных признаков и параметров контролируемых объектов с позиций информативности, а зачастую даже с позиций избыточности потока информации. Это касается всех уровней и разделов диагностики.

Надеюсь, что те читатели, которые склонны серьезно задуматься над основными вопросами научного познания, кто имеет тягу к самостоятельному мышлению, кто в поиске нового, необычного, выходящего за привычные рамки, оставят свои отзывы и критические замечания по прочтении данного пособия.

10 Словарь терминов и понятий Техническая диагностика базируется на ряде специфических терминов и понятий, установленных государственными стандартами (ГОСТ 26656-85 , ГОСТ 20911-89 ). Ниже приведены данные согласно ГОСТам, ОСТам, СТП, а также взятые в научно-технической и учебной литературе .

Выборочно остановимся на основных терминах.

Техническое состояние – совокупность свойств объекта, подверженных изменению в процессе эксплуатации, характеризуемых в определенный момент времени заданным требованиям и признаками, установленными НТД.

Объект диагностики – изделие или его составная часть, являющаяся предметом выполнения работ в процессе диагностирования.

Диагностирование – процесс определения вида технического состояния объекта, системы.

Диагностический признак – индивидуальная характеристика состояния или развития объекта, процесса, характеризующая его свойство, качество.

Диагностический параметр - оцифрованная физическая величина, отражающая техническое состояние объекта и характеризующая какое-либо свойство объекта в процессе его диагностирования.

Критерий – (от греч. kriterion) признак, на основании которого производится оценка, определение или классификация чего-либо; мерило оценки.

Неисправность (неисправное состояние) – состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных НТД.

Исправность (исправное состояние) – состояние объекта, при котором он соответствует всем требованиям, установленным НТД.

Работоспособное состояние состояние (работоспособность) – объекта, изделия, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах установленных НТД.

Неработоспособное состояние (неработоспособность) – состояние объекта, изделия, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям НТД.

Отказ – событие, заключающееся в нарушении работоспособного состояния объекта диагностики.

Дефект – каждое отдельное несоответствие объекта требованиям, установленным НТД.

Контролепригодность свойство, характеризующее

– приспособленность объекта к проведению его контроля заданными методами и средствами технической диагностики.

Программа диагностирования совокупность алгоритмов

– диагностики, выстроенных в определенной последовательности.

Безотказность свойство объекта непрерывно сохранять

– работоспособность в течение определенного времени или наработки.

Надежность – свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, режимов хранения и транспортирования.

Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе ТО и Р.

Прогнозирование – процесс определения технического состояния объекта контроля на предстоящий период времени в определенном интервале.

Наработка – время эксплуатации объекта (в часах, посадках, циклах, годах).

Априори - (от лат. apriori - из предшествующего) понятие логики и теории познания, характеризующее знание, предшествующее опыту и независимое от него.

Диссипация – (от лат. dissipatio рассеивание) - 1) для энергии - переход энергии упорядоченного движения (например, энергии электрического тока) в энергию хаотического движения частиц (теплоту); 2) для атмосферы постепенное улетучивание газов атмосферы (земли, других планет и космических тел) в окружающее космическое пространство.

Ресурс – продолжительность эксплуатации объекта (в часах, посадках, циклах).

Неразрушающий контроль – контроль качества продукции, изделия, объекта, который должен не нарушать пригодности для использования по назначению.

Метод контроля – совокупность правил применения определенных принципов для осуществления контроля.

Способ контроля – совокупность правил применения определенных видов осуществления методов контроля.

Средство контроля – изделие (прибор, дефектоскоп) или материал, применяемые для осуществления контроля с учетом разновидностей способов, методов контроля.

Автоматизированная система диагностики – система диагностики, в которой процедуры диагностирования осуществляются с частичным непосредственным участием человека.

Автоматическая система диагностики – система диагностики, в которой процедуры диагностирования осуществляются без непосредственного участия человека.

Трибодиагностика – (от лат. tribus, tribuo – делить, распределять) область диагностики, занимающаяся определением технического состояния трущихся деталей на основе анализа продуктов износа в смазочном масле.

Глава 1. Основы технической диагностики

Основные направления технической диагностики 1.1.

Техническая диагностика изучает методы получения и оценки диагностической информации, диагностические модели и алгоритмы принятия решений. Техническим диагностированием называется процесс определения технического состояния объекта с определенной (ТС) точностью. Целью технической диагностики является эффективная организация процессов диагностирования авиационной техники (АТ) при изготовлении, эксплуатации, ремонте и хранении, а также повышение ее надежности и ресурса при качественном техническом обслуживании (ТО), безопасной и надежной эксплуатации.

При диагностировании определяется состояние объекта в данный момент времени, на предстоящий и прошедший периоды работы.

Планер, двигатель, функциональные системы АТ подвержены непрерывным, качественным изменениям. Направление этих изменений предопределяется вторым законом термодинамики, который утверждает, что упорядоченные системы (к ним относятся все технические устройства) имеют тенденцию самопроизвольно разрушаться со временем, т.е.

утрачивать упорядоченность, заложенную в них при создании. Эта тенденция проявляется при совместном действии многочисленных дезорганизационных факторов, которые не могут быть учтены при проектировании и изготовлении АТ, поэтому процессы изменения качества кажутся нерегулярными, случайными, а их последствия - неожиданными.

При эксплуатации АТ по фактическому техническому состоянию важно обеспечить необходимую эффективность технического обслуживания.

Для этой цели служит ранняя диагностика, позволяющая обнаружить неисправности АТ с упреждением в такой стадии их развития, которая допускает хоть и ограниченное, но безопасное продолжение эксплуатации.

Благодаря раннему обнаружению дефектов и неисправностей техническая диагностика позволяет устранить отказы в процессе ТО, что повышает надежность и эффективность эксплуатации АТ. Это означает, что диагностика совершенствуясь и развиваясь перерастает в прогнозирование состояний АТ, являющееся одним из направлений области технической диагностики.

Здесь решения должны основываться на моделях отказов, изучаемых в теории надежности. При прогнозировании очень важен выбор вида модели и ее обоснование, так как прогноз, осуществляемый по разным моделям, дает существенно различные результаты . Следует отметить, что прогнозирование с использованием диагностических моделей может осуществляться не только путем экстраполяции, но и в направлении уменьшения наработки интерполированием. Такое предсказание прошедшего состояния называется генезом. Генез необходим при оценке состояния объекта, предшествовавшего отказу.

Таким образом, подводя черту под вышесказанным, следует акцентировать внимание на трех основных направлениях, вокруг которых и базируются представления о классических и прикладных задачах в области теоретической и практической диагностики, ее информационные составляющие - генез, диагноз, прогноз.

Задачи технической диагностики 1.2.

Техническая диагностика АТ решает обширный круг задач, но основной - является распознавание состояний технических систем в условиях ограниченной информации. Решение диагностических задач (отнесение объекта к исправному или неисправному состоянию) всегда связано с риском ложной тревоги или пропуска дефекта.

Следует отметить, что угрожающие при своем развитии разрушением объектов АТ неисправности можно укрупнено разделить на три группы :

1) неисправности очень быстро (в течение долей секунды или нескольких секунд) переходящие в аварию, или, что почти то же самое, неисправности, слишком поздно обнаруживаемые с помощью доступных средств диагностики;

2) неисправности, способные развиваться в аварию в течение нескольких минут, а также неисправности, характер и темп развития которых нельзя достоверно предсказать на основе достигнутого уровня знаний.

Возникновение подобных неисправностей должно сопровождаться немедленной выдачей сигнала экипажу самолета персоналу (или испытательного стенда) для привлечения внимания, оценки ситуации и принятия необходимых мер;

неисправности, развивающиеся относительно медленно или 3) обнаруживаемые наличными диагностическими средствами на столь ранней стадии, что переход их в аварию в продолжение данного полета можно считать практически исключенным. Раннее обнаружение именно таких неисправностей и составляет основу прогнозирования состояний АТ.

Интервал времени от появления первого симптома неисправности до опасного ее развития является не столько физическим свойством конкретной неисправности, сколько мерилом уровня наших познаний о ее причинах, признаках и процессах развития.

Одна из практических задач исследований диагностики в области динамики развития неисправностей АТ состоит в том, чтобы максимально сокращать число неисправностей первой и второй групп и постепенно «переводить» их в третью, расширяя, таким образом, возможности раннего диагностирования и долгосрочного прогнозирования состояний АТ. Высокая степень упреждения диагноза не только повышает безопасность полетов (БП), но и способствует существенному снижению эксплуатационных затрат, связанных с нарушением регулярности полетов, ремонтом АТ.

Опыт эксплуатации АТ для решения задач диагностики показывает, чтобы правильно поставить диагноз, необходимо на первом этапе заранее знать все возможные состояния, исходя из априорных статистических данных и вероятностей проявления ситуаций, а также массив диагностических признаков, реагирующих на эти состояния. Как уже отмечалось, процесс качественного изменения технических свойств АТ происходит непрерывно, а это значит, что множество возможных ее состояний бесконечно и даже несчетно. Одна из задач диагностики состоит в том, чтобы разбить множество состояний на конечное и небольшое число классов. В каждом классе объединяются состояния, обладающие одинаковыми свойствами, выбранными в качестве признаков классификации.



При этом статистическая база параметров, полученных перечисленными выше методами диагностики, должна быть непредвзятой и реальной.

Не все параметры, которые могут быть использованы в диагностике, равноценны по содержательности сведений о функционирующих системах АТ. Одни из них приносят информацию сразу о многих свойствах работающих модулей, другие, напротив, крайне бедны. Безусловно, предпочтение следует отдавать диагностическим параметрам, носящим флуктуирующий характер, а не тем, которые постоянны или меняются очень медленно . Например, шум авиадвигателя и его вибрация по количеству привносимой информации имеют большое преимущество перед такими устойчивыми инертными сигналами, как температура охлаждающей жидкости, скорость вращения вала и др., хотя эти параметры так же как шум и вибрация зависят от состояния работающего авиадвигателя. Поэтому на втором этапе интересным представляется рассмотреть задачи взаимосвязи диагностических параметров, их изменение и возможное влияние друг на друга, а также оценить значимость признаков разных функциональных параметров АТ.

Известно, что теория постановки диагноза довольно хорошо описывается общей теорией связи, являющейся одним из разделов теории управления . На службу диагностике можно поставить математический и логический аппараты, систему освоенных понятий и терминологию.

Необходимо лишь найти физическую интерпретацию абстрактных формул и пути практического осуществления предписываемых ими подходов. Таким образом, на третьем этапе необходимо подтвердить, воспользовавшись известными принципами информационной теории, значимость диагностических признаков, и с учетом этого сформировать диагноз, а в дальнейшем, осуществить прогноз предотказных состояний. Эта часть работы связана с наибольшими трудностями, т.к. функциональные системы АТ являются многопараметрическими, но не все параметры одинаково существенны (информативны) в тех или иных конкретных условиях.

Обратимся к классической трактовке структурирования диагностики по Биргеру И.А. лишь с некоторым дополнением этой схемы (рис.1.1) [ 4 ].

ТЕХНИЧЕСКАЯ

ДИАГНОСТИКА АТ

–  –  –

Представленная укрупненная структура характеризуется двумя взаимосвязанными направлениями: теорией распознавания и теорией информативности. Теория распознавания дополнена новыми элементами классификации и включает в себя разделы, связанные с построением алгоритмов распознавания, решающих правил при идентификации объектов контроля и диагностических моделей и их классификацию. Теория информативности в данном контексте подразумевает получение диагностической информации с помощью известных методов и средств диагностики, автоматизированный контроль с разработкой алгоритмов поиска неисправностей, минимизацию процесса установления диагноза.

Еще один круг задач в области технической диагностики связан с непрерывным внедрением систем диагностирования в практику эксплуатационных предприятий ГА. Условием для их внедрения является наличие специальных методик и программ диагностирования, а также алгоритмов принятия решений по дальнейшей эксплуатации АТ. При этом необходимыми условиями являются наличие современного приборного, метрологически аттестованного оборудования и кадров соответствующего уровня квалификации.

В последующих главах пособия излагаются теоретические и информационные аспекты методов постановки технического диагноза, рассматриваются методы диагностики авиационной техники с информационных позиций, приводятся конкретные примеры в области информационной диагностики.

Глава 2. Теоретические и информационные аспекты технического диагноза

2.1. Основные философские воззрения теории информации Рассмотрим, как изменялось понятие «информация» в разные периоды развития диагностики и в разных ее контекстах. Различные исследователи предлагали как разные словесные определения, так и разные количественные меры информации. Анализ истории термина «информация»

позволяет глубже понять некоторые современные аспекты и разночтения его употребления. Латинское слово «информация» означает: придание формы, свойств. В XIY веке так называли божественное «программирование» вложение души и жизни в тело человека . Примерно в это же время слово «информация» стало означать и передачу знаний с помощью книг. Таким образом, смысл этого слова смещался от понятий «вдохновение», «оживление» к понятиям «сообщение», «сюжет».

В настоящее время мы говорим, что получаем информацию (сведения), когда узнаем что-либо о событии, результат которого не был предопределен;

и чем более ожидаемым, вероятным является событие, тем меньше информации мы получаем. На таких рациональных представлениях о том, как уменьшается неопределенность при получении тех или иных сведений, и базируются научные концепции информации и количественные (вероятностные) меры ее оценки .

Основополагающими работами в этом направлении являются статьи Р. Хартли (1928 г.) для равновероятных событий и К. Шеннона (1948 г.) для совокупностей событий с различными вероятностями.

Следует отметить, что еще в г. появилась работа нашего соотечественника В.А. Котельникова о квантовании электрических сигналов, содержащая знаменитую “теорему отсчетов”. Однако в мировой научной литературе считается, что именно 1948 г. – это год зарождения теории информации и количественного подхода к информационным процессам.

Появление этих работ было обусловлено стремительным развитием технических средств связи и необходимостью измерения передаваемых сведений. Теория информации “объемов” (количеств) возникла в недрах теории связи, как ее аппарат и фундамент. Это отражено уже в названии основополагающего труда К. Шеннона «Математическая теория связи». При этом сам автор был против распространения его подхода на другие научные направления: он писал о специфике задач связи, о трудностях и ограничениях своей теории.

Однако следующие три десятилетия стали периодом широчайшей экспансии теоретико-информационных представлений - развития как собственно теории информации, так и ее разнообразнейших приложений, благодаря которым сформировалась настоящая общенаучная, философско – информационная парадигма. Вовлеченными в этот процесс оказались и “чистые” математики, и специалисты по теории систем, физики, химики, биологи, представители практически всех гуманитарных наук.

Для этого “взрыва” были определенные предпосылки, сформированные развитием физики. Математическое выражение для количества информации, введенное Р.Хартли (2.1) и обобщенное К.Шенноном (2.2-2.3), - «копия»

знаменитой формулы Л. Больцмана для физической энтропии системы. Это «совпадение» далеко не случайно - оно свидетельствовало о каких-то глубинных общностных процессах. Потребовалась универсальная мера гетерогенности систем, которая позволила бы сравнивать их сложность и многообразие. В дальнейшем эта мера использовалась как, например, в термодинамике (в моделях идеального газа), так и в диагностике материальных объектов (при анализе работы функциональных систем, распознавании образов, в решении задач постановки диагноза).

Проникновение термодинамических представлений в теоретикоинформационные исследования привело к переосмыслению работ классиков термодинамики и статистической физики. В публикациях рассматриваемого периода упоминаются работы П. Лапласа, Р. Майера, Д. Джоуля, Г. Гельмгольца, С. Карно, Р. Клаузиуса, Дж. Томпсона, Нернста, Дж. Гиббса, Л. Больцмана, Дж. Максвелла, Л. Сцилларда и других физиков.

Представления термодинамики и статистической физики создатели теории информации стремились расширить до ранга общесистемных моделей. Своеобразным этапом в этом процессе стали работы Л. Бриллюэна , который на основе введенного им понятия «негэнтропийного принципа»

обосновал связь понятия количества информации с понятием физической энтропии. Пользуясь современными терминами, следует отметить, что предметом не только этих первых, но и большинства более поздних теоретико-информационных работ была лишь “микроинформация” информация, которую система не запоминает и которая является мерой разнообразия возможных микросостояний, определяющих макросостояние системы.

Развитие теоретических термодинамических представлений привело, в частности, к выводам о возможности построения статистической как равновесной, так и неравновесной термодинамики на базе теории информации, а впоследствии - и к построению (в том числе и на базе экспериментов) термодинамической теории информационных процессов, в которой установлены связи между информационными и энергетическими характеристиками .

Существует и другой подход к понятию информации, охватывающий структуры и связи систем. В 1936 году А. Тьюринг и Э. Пост независимо друг от друга разработали концепцию “абстрактной вычислительной машины”. Затем А. Тьюринг описал гипотетический универсальный преобразователь дискретной информации (“машину Тьюринга”).

Начало пониманию сущности информации как всеобщего свойства материи было положено Н. Винером. В 1941 году он опубликовал свой первый труд об аналогиях между работой математической машины и нервной системы живого организма, а в 1948 году - фундаментальное исследование или управление и связь в животном и “Кибернетика, машине” . По замыслу автора эта монография должна была стать наукой об управлении, объединяющей все виды управления в живой и неживой природе. Недаром Н. Винер использовал для названия новой науки термин, предложенный еще Ампером в его классификации наук. Ампер, как известно, предлагал назвать кибернетикой науку об управлении государством.

Предложенная формула информации «Информация - это информация, а не материя или энергия», зафиксированная как открытие в Международной регистрационной палате информационно-интеллектуальной новизны, интерпретируется следующим образом: «Информация представляет собой всеобщее свойство взаимодействия материального мира, определяющее направленность движения энергии и вещества. Это всеобщее, нематериальное свойство взаимодействия материального мира включает в себя первичную и вторичную информацию. При этом, под первичной информацией подразумевается направленность движения вещества, при котором возникает не только направленность его движения в пространстве, но и форма (структура, морфология) как результат направленности движения, составляющих вещество элементов, а вторичная информация есть отражение первичной в виде формы (структуры, модуляции) пространственных сил, сопровождающих всякое движение вещества. Открытие может быть использовано для изучения процессов и явлений, не имеющих в настоящее время научного обоснования, в физике, химии, биологии, медицине, экономике и других областях человеческих знаний» .

Из этого следует, что информация объединяет в себе три принципиально отличные вида направленность движения, форму

– (структуру) вещества и форму (структуру, модуляцию) окружающих вещество полей, которые мы наблюдаем в результате действия пространственных сил, сопровождающих движение вещества. Однако Н. Винер не смог объяснить взаимосвязь механизма информационного взаимодействия и механизма управления.

На необходимость двух принципиально различных подходов к построению теории информации указывал Дж. Нейман, отмечавший, что вероятностно-статистический подход необходим для информационного описания двух разных процессов (систем) – статистических и динамических.

Понятие информации не случайно оказалось ключевым для быстро развивающихся дисциплин – как общенаучных, так и специальных. Это было вызвано бурными успехами экспериментально-аналитических исследований более полвека назад, в 1948 г., когда были созданы концепции и основы математического аппарата общей теории информации для анализа состояний систем.

Большое значение для понимания сущности информации имели работы английского ученого У. Эшби, однако, и они не смогли сдержать превращения кибернетики как науки об управлении, в науку об обработке информации с помощью вычислительной техники. Мешала математика:

предложенная Н. Винером и К. Шенноном формула для измерения информации «заслонила» от ученых физику информации, о которой говорили Н. Винер и У. Эшби. Более того, вмешательство в выяснение сущности информации таких известных физиков, как Э. Шредингера и Л. Бриллюэна, только усугубило проблему: информации стали противопоставлять энтропию энергии, т.к. математическое выражение для измерения количества информации Винера-Шеннона по форме совпадало с математическим выражением энтропии энергии Больцмана-Планка.

Считалось, что «настоящую информацию» измерить нельзя, т.к. до конца оставалось неясно, что же такое настоящая информация.

В теории связи по К.Шеннону информация выступает в виде различных сообщений: например, букв или цифр, как в телеграфии, или непрерывной функции времени, как при телефонии или радиовещании, но в любом из указанных примеров это представляет собой передачу смыслового содержания человеческой речи. В свою очередь человеческая речь может быть представлена в звуковых колебаниях или в письменном изложении. На это удивительное свойство информации – представлять одно и то же смысловое содержание в самом различном физическом виде – обратил внимание исследователей У. Эшби. Это свойство вторичной информации называется кодированием. Для того чтобы общаться с другими людьми, человеку приходится постоянно заниматься кодированием, перекодированием и декодированием. Понятно, что по каналам связи вторичная информация может передаваться в самых различных системах кодирования. Одной из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи вторичной информации.

Для решения этой задачи К. Шеннон использовал математический аппарат, созданный еще в 1928 году Р. Хартли в его работе «Передача информации». Именно Р. Хартли ввел в теорию передачи информации методологию "измерения количества информации", которая представляет собой «группу физических символов – слов, точек, тире и т.п., имеющих по общему соглашению известный смысл для корреспондирующих сторон» .

Таким образом, ставилась задача ввести какую-то меру для измерения кодированной информации, а точнее последовательности символов, используемых для кодирования вторичной информации.

Рассматривая передаваемую информацию в виде определенной последовательности символов, например алфавита, а передачу и прием этой информации в виде последовательных выборов из этого алфавита, Р. Хартли ввел понятие количества информации в виде логарифма числа, общего количества возможной последовательности символов (алфавита), а единицей измерения этой информации определил – основание этого логарифма. Тогда, например, в телеграфии, где длина алфавита ровна двум (точка, тире), при основании логарифма 2, количество информации, приходящееся на один символ равно H = log 22 = 1 бит (1 двоичная ед.). (2.1) Аналогично при длине алфавита 32 буквы: H = log2 32 = 5 бит (5 двоичных единиц).

Шеннон К., используя методологию Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко. Существует и определенная корреляция в буквенных последовательностях, когда за появлением одной из букв с большой вероятностью следует конкретная другая. Введя в формулу Р. Хартли указанные вероятностные значения р, К. Шеннон получил новые выражения для определения количества информации. Для одного символа это выражение приобретает вид:

–  –  –

Выражение (2.3), повторяющее по форме выражение для энтропии в статистической механике, К. Шеннон по аналогии назвал энтропией.

Такой подход принципиально изменил понятие информации. Под информацией теперь стали понимать не любые сообщения, передаваемые в системе связи, а лишь те, которые уменьшают неопределенность у получателя информации об объекте, и чем больше уменьшается эта неопределенность, т.е. чем больше снижается энтропия сообщения, тем выше информативность поступившего сообщения. Энтропия - это тот минимум информации, который необходимо получить, чтобы ликвидировать неопределенность алфавита, используемого источником информации.

Форма информации (структура, модуляция физических полей), которая и несет смысловое содержание этой информации, реализуя его через информационное взаимодействие материи, является вторичной информацией.

Легко понять, что смысловое содержание вторичной информации в человеческом обществе это знание об окружающем нас мире,

– определяющее поведение человека, т.к. опираясь на эти знания, человек взаимодействует с природой и материальными объектами.

Вторичная информация существует объективно, независимо от воли и сознания людей. Вторичная информация, например, может проявляться в виде электромагнитного, гравитационного полей, фиксируемых органолептическими чувствами человека.

Человек воспринимает мир через образы, но, анализируя увиденное, мыслит словами. Это означает, что в нашей памяти одновременно хранится образная вторичная информация об окружающем нас мире в своем естественном голографическом виде и перекодированная вторичная информация в символике нашего языка. Каждый человек постоянно занимается кодированием и перекодированием, наблюдая окружающий мир.

При этом символьную информацию, хранящуюся в памяти, можно анализировать количественно по Э.Хартли или К.Шеннону, используя одинаковый алфавит и двоичную систему счисления. Настоящая информация действительно не измеряется, т.к. отсутствуют эталоны сравнения. Однако ее можно классифицировать и определить более значимую составляющую для постановки диагноза.

Следует отметить, что важную роль в развитии теории информации сыграли математические исследования - работы А.Н. Колмогорова, М.М. Бонгарда , которые привели к новым определениям в теории информации. Количество информации рассматривалось как минимальная длина программы (сложность), позволяющая однозначно преобразовывать одно множество в другое. Эти подходы позволили весьма расширить круг конкретных задач, в частности, вовлечь во многие исследования мощь электронно-вычислительной техники.

Технические системы сразу же стали очень перспективными объектами для диагностики. С одной стороны, это – физические, материальные объекты, доступные разным методам экспериментальных исследований. С другой стороны, информационный обмен является важнейшей характеристикой поведения этого объекта. Наличие информационного обмена, общего для любых технических объектов позволяет осуществить их (систем), диагностику на основе теории информации, т.е. использовать ее для обеспечения процессов распознавания состояний АТ.

–  –  –

2.2.1. Закон сохранения информации сохраняет свое значение в неизменном виде «Информация пока остается в неизменном виде носитель информации – материальный объект» . Закон сохранения информации - это, прежде всего, проявление одного из важнейших свойств информации - независимость информации от времени. Будучи нематериальной стороной материи, информация не может существовать сама по себе без материальной стороны. Однако имеет место распределение первичной и вторичной информаций по шкале времени.

Вторичная информация, как правило, преобладает с увеличением возраста объекта, но при этом сохраняется неизменность суммарной информации.

Это свойство обеспечивается под воздействием специальных физических сил. Физические силы - это основа современной физической науки. Именно с изучения сил и началось становление физики как науки.

Основоположник физической науки И. Ньютон высказался по этому вопросу совершенно определенно, считая что вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления.

–  –  –

Рис.2.1. Основные информационные законы 29 Все законы сохранения энергии и действующие в них силы жестко связаны с информационной стороной движения, но приоритет всегда отдавался энергетическому проявлению сил, а потому затенялось главное указанные силы действуют в интересах сохранения информации.

Интересно отметить, что еще в XVII в. Лейбниц назвал математическое выражение для измерения количества движения, сформулированное Ньютоном (p = mV), «законом сохранения направления», или «законом сохранения движения вперед». То же самое можно сказать и о силе инерции:

сила инерции сохраняет направленность равномерного и прямолинейного движения вещественных тел. Причем сохраняет не только скорость, но, прежде всего, направленность движения. Сила инерции - это сила сохранения информации.

В физике существует большое количество сил сохранения информации.

Одни сохраняют плоскость кругового движения, другие направленность оси гироскопа, третьи форму и структуру вещественных тел, но все они рассматриваются разрозненно, без понимания их общего предназначения и механизма действия. Рассмотрение действия различных сил – традиционная область научных интересов современной физики и те трудности, которые эта область испытывает сегодня, объясняются, прежде всего, непониманием информационной стороны действия этих сил, и незнанием информационных законов.

Закон сохранения информации – это многогранный и сложный закон, теория которого находится на стадии формирования. Но уже сегодня можно с уверенностью сказать: «Любая информация, во всех ее формах и структурах имеет силы сохранения, оберегающие ее существование» .

–  –  –

Этот закон логически вытекает из сущности информационного дуализма . Появление любых новых материальных форм есть всегда результат энергоинформационного взаимодействия, но сама новая форма (структура) материи определяется только информационной стороной этого взаимодействия.

Выше показано, что любому человеческому труду предшествует создание вторичной информации, которая тоже создается на основании информации – человеческих знаний. Но в процессе самого труда в формообразовании участвует и контактное взаимодействие различных видов первичной информации.

Когда на прессе штампуется изделие определенной формы, то все понимают, что форма эта зависит не от мощности пресса, а от формы штампа. Конечно, получение формы под давлением во многом определяется твердостью, пластичностью используемого материала, его способностью сохранять заданную форму. Но это свойства не формы, а носителя этой формы, определяющие у него наличие «памяти» и параметров этой памяти.

Носитель всегда материален и его материальные свойства определяют свойства памяти, но не информации. Сама же форма - не материальна.

Общая теория информации показывает, что информация не зависит от времени, но характеризуется пространством. Энергия не зависит от пространства, но характеризуется временем .

Например, любое физическое колебание механическое или электромагнитное - имеет две независимые, но совместно действующие стороны: энергетическую, связанную со скоростью движения материи, которая характеризуется временем, и информационную, связанною с пространственным действием колебаний, пространственным размахом.

Скорость движения механического маятника, как известно, при одинаковом периоде колебаний может быть различна и определяется энергией. А период колебаний этого маятника, как определил Ньютон, зависит только от его длины.

2.2.3. Основной закон термодинамики в информационной трактовке Одним из важнейших принципов, вытекающих из второго начала термодинамики, является принцип деградации энергии. При этом энергия подразделяется на энергию высокого качества механическую и электрическую, среднего качества – химическую, и низкого качества тепловую энергию. Такая классификация определяет способность энергии производить работу, а это означает, что тепловая энергия по сравнению с остальными дает самый низкий коэффициент полезного действия.

Энергия механической системы имеет самый высокий КПД именно потому, что в механической системе все молекулы жестко связаны и в процессе выполнения работы движутся однонаправлено.

Все это означает, что для выполнения работы энергетические возможности должны сопровождаться возможностями информационными и всякий процесс совершения работы есть процесс информационного взаимодействия, в котором информация выступает в виде свойства, управляющего направленностью движения.

Новое толкование второго начала термодинамики позволяет определить ее связь с классической механикой, которая казалось утерянной из-за отсутствия в термодинамике понятия траектории: всякий процесс совершения работы есть процесс информационного взаимодействия, в котором информация выступает в виде направленности движения, выполняя управляющую роль.

Информационная трактовка второго начала утверждает, что в замкнутой системе любое однонаправленное коллективное движение составляющих эту систему элементов не может продолжаться сколь угодно долго и должно перейти в хаотическое движение.

Но поскольку сама информация не зависит от времени, то целесообразно подчеркнуть, что второе начало в общей теории информации связано с материальным свойством нематериальной информации, с носителем информации, с тем свойством, которое называется образом (видом).

Второе начало термодинамики - это всеобщий закон природы, который распространяется на любую физическую систему, в том числе и на стационарные формы существования материи. Ведь стационарная форма существования материи - это результат информационного взаимодействия.

Направленное движение материальной точки, единичного объекта - это простейший вид существования информации, но он является основой возникновения любой другой формы материального мира.

2.2.4. Принцип минимума диссипации «При информационном взаимодействии направленность движения обеспечивает минимум диссипации энергии» .

Еще в XVIII в. П. Мопертюи сформулировал принцип, который называется сегодня принципом наименьшего действия Мопертюи-Лагранжа.

Мопертюи П. сформулировал, что природа, производя действия, всегда пользуется наиболее простыми средствами, и количество действия всегда является наименьшим. Правда, П. Мопертюи не смог объяснить правильно, что же такое «действие природы», и полагал, что справедливость этого принципа следует из разума Бога.

В термодинамике сформулирован принцип наименьшего рассеяния энергии . Этот принцип обоснован в теореме американского физика Л. Онсагера - одной из основных теорем термодинамики неравновесных процессов.

На основании теоремы Л. Онсагера бельгийским физиком И. Р. Пригожиным в 1947 г. доказана еще одна теорема термодинамики неравновесных процессов, названная теоремой И. Пригожина, согласно которой при данных внешних условиях, препятствующих достижению системой равновесного состояния, стационарному состоянию системы соответствует минимум производства энтропии.

33 Сама сущность проводимых в этой области изысканий: формирование потока и движение потока, перемещение материальной точки в потенциальном поле, действие сил, определяющих направленное движение, все это говорит о том, что следует рассматривать именно информационную сторону взаимодействия материи. Именно информация управляет и направленностью движения вещества и направленностью движения энергии.

Общая теория информации утверждает что существует , информационная сторона взаимодействия материи, определяющая направленность движения, и естественным критерием выбора направленности движения является минимум диссипации энергии.

Используемое понятие минимума диссипации энергии выходит за рамки сегодняшнего понимания в физике, более того, энергетическая сторона энергоинформационного взаимодействия материи с учетом управляющего информационного воздействия требует серьезного физического уточнения, но это уже выходит за рамки общей теории информации. Принцип минимума диссипации энергии – универсальный закон информационного взаимодействия, объясняемый только с позиций общей теории информации .

–  –  –

неопределенности при статистическом описании, приводятся в курсах теории информации и некоторых курсах статистической физики Ландау Л.Д., Лифшица Е.М., Леонтовича М.А. и др.

2.3.2. Применение Н-теоремы для открытых систем Среди систем, которые могут обмениваться энергией, выделяется значимый класс систем, движение в которых можно рассматривать как броуновское. В таких системах разность свободных энергий F(t) и F0 (где индекс "0" относится к равновесной характеристике) определяется выражением:

–  –  –

которое представляет пример т.н. энтропии Кульбака.

2.3.3. Динамическое и статическое описание сложных движений Ранее отмечалось, сколь драматическим было "соперничество" динамической и статистической теорий при описании сложных движений в открытых макроскопических системах.

Похожие работы:

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет» Кафедра автомобильных перевозок МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению организационно-экономической части дипломного проекта для студентов специальности 240400.01 (190702) «Организация и безопасность движения» всех форм обучения Составители Л. Н. Клепцова Ю. Н. Семенов Рассмотрены и утверждены на заседании кафедры Протокол № 69 от...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ПРОФЕССИОНАЛЬНЫЕ ЦЕННОСТИ И ЭТИКА БУХГАЛТЕРОВ И АУДИТОРОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПЕНЗА 2015 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» (ПГУ) Профессиональные ценности и этика...»

«Министерство образования и науки Российской Федерации ФГБОУ ВПО «Уральский государственный лесотехнический университет» Факультет туризма и сервиса Кафедра философии Одобрена: Утверждаю Кафедрой философии протокол от 14.01.2015 г. № 5 Директор ИЛБиДС Зав. кафедрой Новикова О.Н. Герц Э.Ф. Методической комиссией ИЛБиДС « _ » 2015 г. протокол от 2015 г. № Председатель ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б.1.Б2. Философия Направление:270800.62 (08.03.01) Строительство Профиль: Автомобильные дороги и...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» М.И. ЛЕБЕДЕВА, И.А. АНКУДИМОВА, О.С. ФИЛИМОНОВА Светлой памяти Надежды Александровны Сухоруковой посвящается ХИМИЧЕСКАЯ ЭКОЛОГИЯ (ЗАДАЧИ, УПРАЖНЕНИЯ, КОНТРОЛЬНЫЕ ВОПРОСЫ) Рекомендовано Учёным советом университета в качестве учебного пособия для студентов дневной и заочной форм обучения...»

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н. ТУПОЛЕВА-КАИ» Институт информационных технологий и телекоммуникаций Кафедра Естественнонаучных и гуманитарных дисциплин УТВЕРЖДАЮ Директор НИИТТ КНИТУ – КАИ И.З. Гафиятов 15 июня 2015г. РАБОЧАЯ ПРОГРАММА учебной дисциплины «Мониторинг среды обитания» Индекс по ФГОС ВПО Б3.В.ДВ.5. Направление 280700.62 Техносферная...»

«Миронова Д.Ю., Евсеева О.А., Алексеева Ю.А.ИННОВАЦИОННОЕ ПРЕДПРИНИМАТЕЛЬСТВО И ТРАНСФЕР ТЕХНОЛОГИЙ Санкт-Петербург МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО Миронова Д.Ю., Евсеева О.А., Алексеева Ю.А.ИННОВАЦИОННОЕ ПРЕДПРИНИМАТЕЛЬСТВО И ТРАНСФЕР ТЕХНОЛОГИЙ Учебное пособие Санкт-Петербург Миронова Д.Ю., Инновационное предпринимательство и трансфер технологий / Д.Ю. Миронова, О.А. Евсеева, Ю.А. Алексеева – СПб: Университет ИТМО, 2015. – 93 с. В учебном пособии...»

« учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ «ГОРНЫЙ» Согласовано Утверждаю Руководитель ООП Зав. кафедрой ИГД по направлению 210502 проф. И.В. Таловина проф. Ю.Б. Марин РАБОЧАЯ ПРОГРАММА «Геолого-съемочная учебная практика» Специальность: 210502 (130101) Прикладная геология Специализация:...»

«ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ «ГОРНЫЙ» Согласовано Утверждаю Руководитель ООП Зав. кафедрой по направлению подготовки машиностроения 15.03.01 «Машиностроение» профессор Максаров В.В. профессор Максаров В.В. «» _ 2015 г. «» _ 2015 г. РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ...»

«Министерство образования и науки Российской Федерации Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Самарский государственный технический университет» в г. Сызрани Александрова О.Б. МАКРОЭКОНОМИКА Методические указания к курсовой работе Сызрань 2013 Печатается по решению НМС инженерно-экономического факультета филиала ФГБОУ ВПО Самарского государственного технического университета в г. Сызрани. Рассмотрено и утверждено НМС...»

«ГЛАВНОЕ УПРАВЛЕНИЕ МЧС РОССИИ ПО РЕСПУБЛИКЕ КОМИ МЕТОДИЧЕСКИЕ ПОСОБИЕ ПО ОБЕСПЕЧЕНИЮ ПОЖАРНОЙ БЕЗОПАСНОСТИ ПРИ РАСПРОСТРАНЕНИИ И ИСПОЛЬЗОВАНИИ ПИРОТЕХНИЧЕСКОЙ ПРОДУКЦИИ г. Сыктывкар 2010г. ГЛАВНОЕ УПРАВЛЕНИЕ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ПО РЕСПУБЛИКЕ КОМИ ОБЕСПЕЧЕНИЕ ПОЖАРНОЙ БЕЗОПАСНОСТИ ПРИ РАСПРОСТРАНЕНИИ И ИСПОЛЬЗОВАНИИ ПИРОТЕХНИЧЕСКОЙ ПРОДУКЦИИ Методическое пособие Методическое пособие...»

«Электронный архив УГЛТУ Е.А. Газеева М.А. Тетерина ОСНОВЫ ЭНЕРГОСБЕРЕЖЕНИЯ В ЛЕСНОМ КОМПЛЕКСЕ Екатеринбург Электронный архив УГЛТУ МИНОБРНАУКИ РОССИИ ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра технологии и оборудования лесопромышленного производства Е.А. Газеева М.А. Тетерина ОСНОВЫ ЭНЕРГОСБЕРЕЖЕНИЯ В ЛЕСНОМ КОМПЛЕКСЕ Методические указания для студентов специальности 250400.62 «Технология лесозаготовительных и деревоперерабатывающих производств» Екатеринбург...»

«Сведения о реализации основной профессиональной образовательной программы Государственное автономное профессиональное образовательное учреждение Тюменской области «Тюменский лесотехнический техникум» (ГАПОУ ТО «ТЛТ») «Соответствие содержания и качества подготовки обучающихся требованиям федеральных государственных образовательных стандартов (ФГОС) (государственных образовательных стандартов (ГОС) – до завершения их реализации в профессиональной образовательной организации) по основной...»

« технический университет» (УГТУ) ОСНОВЫ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ Методические указания Ухта, УГТУ, 2014 УДК622.691.4:053:681.518.5 (075.8) ББК 30.820.5 я К 82 Кримчеева, Г. Г. К 82 Основы технической диагностики [Текст] : метод. указания / Г. Г. Кримчеева, Е. Л. Полубоярцев. – Ухта: УГТУ, 2014. – 32 с. Методические указания предназначены для...»

«ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ «ГОРНЫЙ» Утверждено ученым советом 18 мая 2012г. протокол № 5 Переутверждено ученым советом 20 декабря 2013г. протокол№5 ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Направление подготовки (специальность): 21.05.04...»

«Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого» БЕЛАРУСЬ В СОВРЕМЕННОМ МИРЕ МАТЕРИАЛЫ V Международной научной конференции студентов, аспирантов и молодых ученых Гомель, 24 мая 2012 года Гомель 2012 УДК 316.75(042.3) ББК 66.0 Б43 Редакционная коллегия: д-р социол. наук, проф. В. В. Кириенко (главный редактор) канд. ист. наук, доц. С. А. Юрис канд. ист. наук, доц. С. А. Елизаров канд. геогр. наук, доц. Е....»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия ТРЕБОВАНИЯ ПО ВЫПОЛНЕНИЮ, ОФОРМЛЕНИЮ И ЗАЩИТЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Методические указания Издательство Ангарской государственной технической академии УДК 378.1 Требования по выполнению, оформлению и защите выпускной квалификационной работы: метод. указания / сост.: Ю.В. Коновалов, О.В. Арсентьев, Е.В. Болоев, Н.В. Буякова. – Ангарск: Изд-во АГТА, 2015. – 63 с. Методические указания...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» В. В. БОБРОВА Ю.И. КАЛЬВИНА МИРОВАЯ ЭКОНОМИКА Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет» Оренбург УДК 339.9 (07) ББК 65.5 я Б Рецензент Боброва...»

«МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) О. С. Кочетков, В. Н. Землянский, В. А. Копейкин УЧЕБНО-МЕТОДИЧЕСКОЕ РУКОВОДСТВО к написанию дипломных (курсовых) проектов и работ Учебное пособие Ухта, УГТУ, 2014 УДК (076) ББК 26.30 я7 К 75 Кочетков, О. С. К 75 Учебно-методическое руководство к написанию дипломных (курсовых) проектов и работ [Текст] :...»

«МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) НЕФТЕГАЗОПРОМЫСЛОВАЯ ГЕОЛОГИЯ Лабораторные работы Методические указания Ухта, УГТУ, 2015 УДК 553.98 (0758) ББК 26.3 я7 ЗЗаборовская, В. В. З-12 Нефтегазопромысловая геология. Лабораторные работы [Текст] : метод. указания / В. В. Заборовская. – Ухта: УГТУ, 2015. – 36 с. Лабораторные работы предназначены для студентов...»

«ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет»ТРАКТОРЫ И АВТОМОБИЛИ Методические указания для студентов 4, 5 курсов специальностей 311300, 311900 заочной формы обучения Тамбов Издательство ТГТУ УДК 626.144 ББК 033-011я73-5 М41 Рекомендовано Редакционно-издательским советом университета Рецензент Кандидат технических наук, старший научный сотрудник ВИИТиН Г.Н. Ерохин Составители: В.М. Мелисаров, П.П. Беспалько...»

Глава 1. Современное состояние и анализ существующих методов * диагностики авиационных ГТД.

1.1. Методы диагностики ГТД и их возможности.

1.2. Анализ методов технической диагностики ГТД с позиций информативности.

1.2.1. Тепловые методы и их эффективность.

1.2.2. Возможности виброакустических методов оценки состояния ГТД.

1.2.3. Эффективность трибодиагностики элементов ГТД.

1.2.4. Эффективность диагностики жидкостных систем двигателя.

1.2.5. Эффективность диагностики ГТД по термогазодинамическим

I параметрам.

1.2.6. Методы диагностики проточной части ГТД.

1.3. Методы обобщенной оценки состояния технических систем.

1.3.1. Методы сверток частных параметров контроля к обобщенному показателю.

1.3.2. Методы обобщенной оценки состояния технических систем по информационному критерию.

1.4. Требования к информационному критерию технического состояния ГТД.

Постановка задач.

Выводы по 1-й главе диссертации.

Глава 2. Теоретические и информационные аспекты технического диагноза ГТД.

2.1. Основные философские воззрения теории информации.

2.2. Основные информационные законы. щ 2.2.1. Закон сохранения информации.

2.2.2. Основной информационный закон формообразования и развития материи.

2.2.3. Основной закон термодинамики в информационной трактовке.

2.2.4. Принцип минимума диссипации.

2.3. Энтропия и диагностическая информация.

2.3.1. Энтропия Больцмана-Гиббса-Шеннона в решении прикладных задач.

2.3.2. Применение Н-теоремы для открытых систем.

2.3.3. Динамическое и статическое описание сложных движений.

2.4. Оценка значимости и ценности информации в практических задачах диагностики.

2.5. Обоснование применения информационной энтропии К. Шеннона к решению поставленных задач.

Выводы по 2-й главе диссертации.

Глава 3. Применение теории классификации к решению задач вибродиагностики ГТД.

3.1. Задачи постановки диагноза.

3.2. Множество возможных состояний ГТД.

3.3. Пространство диагностических сигналов.

3.4. Классификация вибросостояний ГТД, их информативность.

3.4.1. Роторная вибрация, ее связь с возможными отказами.

3.4.2. Вибрация аэродинамического происхождения.

3.4.3. Вибрация, возбуждаемая процессами в проточной части ГТД.

3.4.4. Вибрации подшипниковых узлов.

3.4.5. Вибрационные колебания лопаток и дисков.

3.5. Метод экспертных оценок для ранней вибродиагностики ГТД.

3.6. Методика нахождения «адреса» дефекта на основе оценки информации о вибрации.

6 Выводы по 3-й главе диссертации.

Глава 4. Принципы классификации авиационных ГТД при их диагностике.

4.1. Параметрическая классификация объекта диагностики на примере двигателя ПС-90А.

4.2. Определение оптимального состава диагностических признаков для узлов двигателя ПС-90А, подверженных вибронагрузкам.

4.2.1. Расчет интенсивности отказов ГТД ПС-90А.

4.2.2. Оценка средней условной энтропии на промежутке наработки от 0 до 6000 часов.

4.2.3. Результаты оценки количества и качества диагностической информации.

4.3. Определение оптимального состава контролируемых параметров двигателя Д-ЗОКУ.

4.3.1. Расчет интенсивности отказов ГТД Д-ЗОКУ.

4.3.2. Оценка средней условной энтропии на промежутке наработки от 0 до 5000часов.

4.3.3. Результаты оценки количества и качества диагностической информации.

Выводы по 4-й главе диссертации.

5.1. Система информационного обеспечения процессов диагностирования

СИОПД) ГТД.

5.1.1. Назначение и цели системы.

5.1.2. Общие требования, предъявляемые к системе.

5.1.3. Требования к программному обеспечению системы.

5.1.4. Реализация и совершенствование системы.

5.2. Особенности анализа потока информации по результатам опробования

5.3. Метод постановки диагноза с использованием предлагаемых информационных критериев.

5.4. Реализация методики постановки диагноза с учетом информационных критериев на примере авиационного ГТД ПС-90А.

5.4.1. Формирование исходных матриц и определение начальной энтропии узлов и систем ГТД ПС-90А.

5.4.2. Определение оптимального состава диагностических признаков функциональных систем и узлов авиадвигателя ПС-90А.

5.5. Эффективность предложенной системы СИОПД ГТД.

5.5.2. Оценка трудозатрат на выполнение мероприятий по внедрению системы СИОПД ГТД.

Выводы по 5-й главе диссертации.

Рекомендованный список диссертаций

  • Методология построения, идентификации и практического применения линейных математических моделей при параметрической диагностике авиационных ГТД 2003 год, кандидат технических наук Хармац, Илья Григорьевич

  • Разработка теоретических основ и практических рекомендаций с целью эксплуатации авиационных двигателей воздушных судов гражданской авиации по техническому состоянию и совершенствование процессов их диагностирования 2003 год, доктор технических наук Люлько, Владимир Иванович

  • Разработка методов бесконтактной лазерной диагностики авиационных ГТД на основе анализа сигналов вибрации в широкой полосе частот 2010 год, кандидат технических наук Озеров, Андрей Владимирович

  • Метод диагностики авиадвигателей на основе параметрической модели работы турбокомпрессора 2008 год, кандидат технических наук Торбеев, Станислав Александрович

  • Методы повышения эффективности вибрационного диагностирования авиационных газотурбинных двигателей в эксплуатации 2005 год, кандидат технических наук Байемани Неджад Рахман

Введение диссертации (часть автореферата) на тему «Диагностика авиационных газотурбинных двигателей с использованием информационного потенциала контролируемых параметров»

Актуальность и постановка задач

Важным приоритетным направлением в области повышения безопасности и регулярности полетов авиационной техники (AT) является совершенствование как структуры и логической организации эксплуатационно-технической диагностики, так и ее процессов, направленных на эффективность раннего обнаружения предотказных состояний высоконагруженных элементов летательных аппаратов (JIA), составляющих основу методологии диагностики. Безопасность использования AT в значительной степени определяется надежностью, заложенной при проектировании и производстве, а также эффективностью методов и средств диагностики технического состояния AT, обеспечивающих своевременное обнаружение неисправностей и предотказных состояний, возникающих в процессе эксплуатации.

К 2010 году, по словам президента РФ, высокие технологии составят 5% ВВП, а это значит, что необходим «прорыв в сфере информационных технологий и создание техно-парковых зон, в создание которых планируется инвестировать порядка 18 млрд. рублей». Это впрямую относится к проблемам, стоящим перед отраслью гражданской авиации (ГА) в целом, и в области диагностики AT, в частности.

Планер, двигатель, функциональные системы AT подвержены непрерывным, качественным изменениям. Направление этих изменений предопределяется вторым законом термодинамики, который утверждает, что упорядоченные системы, а к ним относятся все технические устройства, имеют тенденцию самопроизвольно разрушаться со временем, т.е. утрачивать упорядоченность, заложенную в них при создании. Эта тенденция проявляется при совместном действии многочисленных дезорганизационных факторов, которые не могут быть учтены при проектировании и изготовлении AT, поэтому процессы изменения качества кажутся нерегулярными, случайными, а их последствия - неожиданными.

При переходе к эксплуатации AT по фактическому техническому состоянию необходимо найти путь, обеспечивающий высокою эффективность технического обслуживания (ТО). Таким путем является ранняя диагностика, позволяющая обнаружить неисправности AT с упреждением, в такой стадии их развития, которая допускает хоть и ограниченное, но безопасное продолжение эксплуатации. Это означает, что диагностика, совершенствуясь и развиваясь, должна перерастать в прогнозирование состояния AT.

Однако, как показывает практика, в эксплуатации зачастую трудно добиться «адресности» дефектов, в частности в такой сложной динамической многокомпонентной системе, которой является авиационный газотурбинный двигатель (ГТД). Накопленный опыт доказывает это. Известные методы инструментального контроля, математического моделирования предотказных состояний ГТД, методы полунатурных испытаний, факторного анализа и др., не дают желаемого эффекта.

Альтернативой здесь являются физические методы диагностики, к которым относятся известные методы оптико-визуального контроля, трибодиагностики, анализа продуктов сгорания, диагностика по виброакустическим параметрам, по результатам контроля термогазодинамических параметров и др. Здесь всегда возникает вопрос - при каком сочетании методов диагностики можно в короткие сроки «адресно» и достоверно предупредить отказ? Этот вопрос до настоящего времени всесторонне не раскрыт. И сейчас имеют место случаи необоснованного съема двигателей с эксплуатации или, что более опасно - пропуск дефектов из-за неправильно поставленного диагноза, как правило, связанных с погрешностями обработки диагностической информации или сбоя в процессе ее анализа (т.н. человеческий фактор). К тому же полностью до конца не раскрыт информационный потенциал контролируемых параметров, несущих важную информацию об объекте диагностирования. Здесь следует акцентировать внимание на термине «информационный потенциал», под которым понимается недоиспользованная возможность учета информационной значимости, как контролируемых параметров, так и методов диагностики, позволяющих более точно определить состояние объекта, т.е. быстрее приблизиться к цели, «адресу» дефекта. Ранее такого рода задачи рассматривались в известных работах Волькенштейна М.В. , Пархоменко П.П. и др. ученых. Однако применительно к конкретным, прикладным задачам диагностики ГТД они не решались.

Большой вклад в развитие методов постановки диагноза авиационных ГТД в России внесли работы, проведенные в ЦИАМ им. П.И.Баранова, ГосНИИ ГА, НИИЭРАТ ВВС, НПО «Сатурн», ОАО «Авиадвигатель», МГТУ ГА, ОАО «Аэрофлот - Российские авиалинии» и др. Анализ результатов исследований, выполненных в упомянутых организациях, показал, что угрожающие при своем развитии разрушением ГТД неисправности можно укрупнено разделить на три группы : а) неисправности, очень быстро (в течение долей секунды или нескольких секунд) переходящие в аварию двигателя, или, что почти то же самое -неисправности, слишком поздно обнаруживаемые с помощью доступных средств диагностики. В эту группу входят, например, «раскрутка» вала свободной турбины двигателя, возникновение отрицательного крутящего момента на валу турбовинтовых двигателей, помпаж и т.п.; б) неисправности, способные развиваться в аварию в течение нескольких минут, а также неисправности, характер и темп развития которых нельзя достоверно предсказать на основе достигнутого уровня знаний. Возникновение подобных неисправностей должно сопровождаться немедленной выдачей сигнала экипажу самолета (или персоналу испытательного стенда) для привлечения внимания, оценки ситуации и принятия необходимых мер. С этой целью двигатели снабжаются определенным набором аварийных сигнализаторов (пожара, падения давления масла, появления «стружки» в масле и т. п.). в) неисправности, развивающиеся относительно медленно или обнаруживаемые наличными диагностическими средствами на столь ранней стадии, что переход их в аварию в продолжение данного полета можно считать практически исключенным. Раннее обнаружение именно таких неисправностей и составляет основу прогнозирования состояний двигателей.

Интервал времени от появления первого симптома неисправности до опасного ее развития является не столько физическим свойством конкретной неисправности, сколько мерилом уровня наших познаний о ее причинах, признаках и процессах развития. По мере накопления таких познаний и появления соответствующей аппаратуры перестали, например, считаться «внезапными» и стали прогнозируемыми некоторые виды разрушения зубчатых передач, подшипников и т. д. .

Одна из практических задач исследований динамики развития неисправностей ГТД состоит в том, чтобы максимально сокращать число неисправностей первой и второй групп и постепенно «переводить» их в третью группу, расширяя, таким образом, возможности раннего диагностирования и долгосрочного прогнозирования состояния ГТД. Высокая степень упреждения диагноза не только повышает безопасность полетов, но и способствует существенному снижению эксплуатационных затрат, связанных с нарушением регулярности полетов, ремонтом ГТД.

Опыт эксплуатации ГТД показывает, что для правильной постановки диагноза необходимо на первом этапе заранее знать все возможные состояния ГТД, исходя из априорных статистических данных и вероятностей проявления ситуаций, а также массив диагностических признаков, реагирующих на эти состояния. Как уже отмечалось, процесс качественного изменения технических свойств авиационного ГТД происходит непрерывно, а это значит, что множество возможных его состояний бесконечно и даже несчетно; поэтому задача состоит в том, чтобы разбить множество состояний на конечное и небольшое число классов состояний. В каждом классе объединяются состояния, обладающие одинаковыми свойствами, выбранными в качестве признаков классификации. При этом статистическая база параметров, полученных перечисленными выше методами диагностики должна быть непредвзятой и реальной .

Не все параметры, которые могут быть использованы в диагностике, равноценны по содержательности сведений о функционирующем ГТД. Одни из них приносят информацию сразу о многих свойствах работающих модулей двигателя, другие, напротив, крайне бедны. Безусловно, предпочтение следует отдавать диагностическим параметрам, носящим флуктуирующий характер, а не тем, которые постоянны или меняются очень медленно . Например, шум ГТД и его вибрация по количеству привносимой информации имеют большое преимущество перед такими устойчивыми инертными сигналами, как температура охлаждающей жидкости, скорость вращения вала и др., хотя эти параметры так же, как шум и вибрация, зависят от состояния работающего ГТД. Поэтому, на втором этапе интересным представляется рассмотреть взаимосвязь диагностических параметров, их изменение и возможное влияние друг на друга, а также оценить значимость признаков разных функциональных параметров ГТД.

Известно, что теория постановки диагноза довольно хорошо описывается общей теорией связи, являющейся одним из разделов теории управления . На службу диагностике можно поставить математический и логический аппараты, систему освоенных понятий и терминологию. Необходимо лишь найти физическую интерпретацию абстрактных формул и пути практического осуществления предписываемых ими подходов. Таким образом, на третьем этапе необходимо подтвердить, воспользовавшись известными принципами информационной теории, значимость диагностических признаков, и с учетом этого сформировать диагноз, а в дальнейшем осуществить прогноз предотказных состояний. Эта часть работы связана с наибольшими трудностями, т.к. авиационный двигатель является многопараметрической системой, но не все параметры одинаково существенны (информативны) в тех или иных конкретных условиях.

Актуальность выбранной проблемы подтверждается также тем фактом, что за рубежом разработки по оптимизации методов технической диагностики авиадвигателей осуществляются рядом ведущих авиационных фирм, например, крупнейшим концерном «Airbus Industry». Однако внедрение иностранных разработок не всегда целесообразно по причине различной контролепригодности ГТД отечественного и иностранного производства.

Сегодня новая отечественная авиатехника вводится в эксплуатацию с трудом, едва ли не во время прохождения необходимых предварительных испытаний. Важно уже на первом этапе эксплуатации самолетов и авиадвигателей реализовывать современные подходы к диагностике, одним из которых является повышение достоверности диагноза авиационных ГТД на основе оптимального выбора (сочетания) методов диагностики с учетом информационного потенциала контролируемых параметров. Это и является главной целью диссертационной работы.

Учитывая прикладную направленность исследований, при изложении математических вопросов автор не стремился достигнуть той строгости, которая принята в специальной математической литературе, но не всегда уместна в технической монографии, и жертвовал ею, если это вело к упрощению физической интерпретации и к лучшему уяснению путей практической реализации результатов.

На сегодняшний день существует множество научных разработок, посвященных проблемам диагностики AT и в частности авиационным ГТД . Большинство этих работ сводятся к узко поставленным задачам диагноза или к разработке отдельных методов и средств технической диагностики, что также весьма актуально и важно.

Надеюсь, что предлагаемые в работе подходы в формировании диагнозов с учетом ценности получаемой информации контролируемых параметров и недоиспользованного их информационного потенциала дополнят эти исследования и улучшат эффективность практики технической эксплуатации ГТД.

Научной новизной обладают следующие результаты, полученные в диссертации; в ней впервые:

1. Исследован и определен потенциал современных методов диагностики ГТД с позиций их информационной значимости.

2. Обоснованы принципы использования положений теории информации в решении задач диагностики ГТД.

3. Разработаны методологические основы совершенствования диагностирования ГТД с учетом информационной значимости контролируемых параметров и диагностических признаков.

4. Разработаны новые принципы т.н. параметрической классификации на примере анализа вибраций ГТД и введен критерий оценки динамики её изменения.

5. Обоснован выбор обобщенного информационного критерия эффективности диагноза ГТД, мерой значимости которого являются энтропийные характеристики диагностируемых объектов и систем.

6. Разработан метод постановки диагноза ГТД с использованием предложенных информационных критериев.

7. Предложена система информационного обеспечения процессов диагностирования ГТД.

Достоверность результатов исследований подтверждается анализом физических явлений, корректным применением методов исследования и положительными результатами апробации предложенных разработок в ряде предприятий.

Практическая ценность работы заключается в том, что ее результаты позволяют:

Правильно классифицировать (группировать) параметры ГТД с целью установления объективных связей между системой состояний и системой диагностических признаков, а также осуществлять содержательное толкование проверок и формировать конечное количество «адресов» отказов; сформировать рекомендации и создавать методики по совершенствованию диагностирования любых сложных технических систем с учетом предложенных информационных критериев;

Реализовывать на практике рекомендации по нахождению «адреса» неисправных (предотказных) состояний ГТД с учетом максимальной информативности методов диагностики, что в конечном итоге позволит повысить безопасность полетов, а также снизить трудоемкость и стоимостные затраты на обслуживание и ремонт ГТД;

Снизить необоснованный досрочный съем ГТД «с крыла».

Реализация и внедрение результатов работы. Основные научные результаты, полученные в диссертационной работе, использованы и внедрены в МГТУ ГА, ОМТУ ЦР ВТ, ФГУАП «Кавминводыавиа», НИИ Строительной Физики, что подтверждено соответствующими актами. Полученные результаты апробированы на практике. Они используются также в учебном процессе подготовки специалистов по технической эксплуатации JLA и Д (дисциплины «Диагностика АТ», «Диагностика и НК», курсовое и дипломное проектирование) по специальности 130300. По материалам диссертационной работы разработано и издано 7 учебных пособий, 1 монография, опубликовано 12 научных статей, в том числе в печатных изданиях, утвержденных ВАК для публикации материалов докторских диссертаций.

Основные положения, выносимые на защиту:

1. Новый подход к использованию ряда положений теории информации в решении конкретных задач диагностики ГТД.

2. Методические основы новых принципов классификации ГТД и рекомендации по выбору и подсчету критериев информативности, позволяющих оптимально сочетать методы диагностики ГТД с целью определения «адреса» предотказного или неисправного состояния.

3. Обоснование и метод количественной оценки обобщенного информационного. критерия и его практического применения в задачах формирования диагноза.

4. Метод постановки диагноза на основе оптимального выбора состава контролируемых параметров ГТД с учетом информационных критериев.

5.Система информационного обеспечения процессов диагностирования авиационных ГТД.

Работа состоит из 5-ти глав.

В первой главе представлен обзор литературы и анализ современного состояния существующих подходов к диагностике авиационных ГТД, дается анализ применяемых на практике методов и средств диагностики авиадвигателей, сформулированы цель и задачи исследования.

Вторая глава посвящена рассмотрению теоретических аспектов технического диагноза, исследованию информационных законов в контексте философской и технической точек зрения. Обосновываются возможности применения теории информации к решению задач диагностики авиационных ГТД. Научно обосновано применение информационной энтропии К.Шеннона к решению диссертационных задач.

В третьей главе рассматриваются, предложенные автором, принципы параметрической классификации технического состояния ГТД. Выведены математическая модель и критерий оценки динамики изменения параметров на примере вибрации ГТД. Приводятся результаты оценки вибрации с позиций нахождения «адреса» неисправности.

В четвертой главе представлены результаты применения принципов параметрической классификации для определения оптимального состава контролируемых параметров применительно к авиадвигателям ПС-90А и Д-ЗОКУ. Получены конкретные оценки информативности контролируемых параметров и диагностических признаков, указывающих на различные состояния авиационных ГТД, во взаимосвязи с наработкой. Сформированы рекомендации по использованию результатов исследования.

Пятая глава посвящена разработке системы информационного обеспечения процессов диагностирования ГТД и соответствующей методики при обслуживании авиадвигателей «по состоянию».

Автор выражает глубокую признательность коллективу кафедр «Двигатели летательных аппаратов» и «Техническая эксплуатация летательных аппаратов и авиадвигателей», а также лично - научному консультанту доктору технических наук, профессору Пивоварову В.А. за конструктивные предложения по формированию содержания и оформлению диссертации.

Похожие диссертационные работы по специальности «Эксплуатация воздушного транспорта», 05.22.14 шифр ВАК

  • Принятие статистических решений по данным виброконтроля с целью предупреждения отказов авиационных двигателей 2005 год, кандидат технических наук Трутаев, Виктор Владимирович

  • Совершенствование методики диагностирования газотурбинных двигателей на основе полетной информации 2001 год, кандидат технических наук Абдуллаев, Парвиз Шахмурад оглы

  • Контроль наличия повреждений авиационных конструкций из композиционных материалов по вибрационным характеристикам 2009 год, кандидат технических наук Тиц, Сергей Николаевич

  • Методы, модели и алгоритмы вибродиагностики авиационных зубчатых приводов 1992 год, доктор технических наук Баринов, Юрий Григорьевич

  • Обоснование и разработка эффективных систем технического диагностирования для мобильных машин сельскохозяйственного назначения 1994 год, доктор технических наук Васильев, Ю. А.

Заключение диссертации по теме «Эксплуатация воздушного транспорта», Машошин, Олег Федорович

Выводы по 5-й главе диссертации

1. Предложена система информационного обеспечения процессов диагностирования (СИОПД) для оценки работоспособности авиационных ГТД.

2. Разработаны метод выбора оптимального состава контролируемых параметров ГТД по предложенному информационному критерию и методика количественной оценки информационного критерия для правильной постановки диагноза при обслуживании авиадвигателей «по состоянию».

3. Рассмотрен конкретный пример реализации новой методики применительно к авиационному ГТД ПС-90А.

4. Определены условные трудозатраты на выполнение мероприятий по внедрению системы СИОПД и новой методики диагностирования в практику ТО и Р ГТД.

Заключение

1. На основании опыта эксплуатации отечественных авиационных ГТД * и многофакторной диагностической информации, характеризующей их техническое состояние, обоснована необходимость совершенствования диагностики авиационных ГТД с учетом информационного потенциала контролируемых параметров. Анализ существующих методов диагностики показал, что для достоверной оценки состояния авиационных ГТД, необходимо использовать комплексную диагностику. При этом важным является оценка диагностической информации по результатам регистрации различных по своей физической природе параметров и характеризующих признаков. Выявлено, что поскольку не все контролируемые параметры ГТД имеют одинаковую информационную ценность, то большое практическое значение приобретает задача выявления тех из них, которые должны включаться в процедуру контроля в первую очередь.

2. Исследованы существующие информационные законы в контексте философской и технической точек зрения, что позволило обосновать возможность применения теории информации к решению задач технической диагностики авиационных ГТД. Рассмотрены новые подходы к решению поставленных задач с использованием теории информации. Обосновано применение информационной энтропии К.Шеннона.

3. Сформированы задачи постановки технического диагноза применительно к авиационным ГТД типа ПС-90А и Д-30 КУ.

4. Рассмотрены задачи классификации состояний ГТД. Предложена т.н. параметрическая классификация.

5. На основе расчетов информационной энтропии на разных этапах т> наработки даны рекомендации по выбору состава контролируемых параметров и диагностических признаков для узлов авиадвигателей ПС-90А и Д-ЗОКУ, проверки по которым для постановки диагноза должны производиться в первую очередь, что повысит безопасность полетов.

6. Построены экспериментальные модели развития дефектов по характеристикам вибрации. Разработана математическая модель и диагностический критерий информативности, основанный на динамике изменения вибрации ГТД в зависимости от наработки и конкретных повреждений проточной части авиационного ГТД ПС-90А. На основе разработанной методики и проведенного эксперимента, сформированы дискретные уровни распознавания «адресов» неисправностей с помощью параметра «повышенная вибрация».

7. Разработаны метод постановки диагноза на основе выбора оптимального состава контролируемых параметров ГТД по предложенным информационным критериям и методика количественной оценки информационных критериев для правильной постановки диагноза при обслуживании авиадвигателей «по состоянию» на примере ПС-90А.

8. Разработана система информационного обеспечения процессов диагностирования для оценки работоспособности авиационных ГТД, которая позволяет качественно произвести оценку технического состояния ГТД с использованием современных методов диагностики при максимальных наработках с начала эксплуатации и после последнего ремонта, а также для реализации методов статистического и информационного анализа отказов и неисправностей двигателей в эксплуатации.

9. Определены условные трудозатраты на выполнение мероприятий по внедрению системы информационного обеспечения процессов диагностирования и усовершенствованной диагностики в практику ТО и Р ГТД.

Список литературы диссертационного исследования доктор технических наук Машошин, Олег Федорович, 2005 год

1. Августинович В.Г., Акиндинов В.А., Боев Б.В. и др. Под ред. Дедеша В.Т. Идентификация систем управления авиационных газотурбинных двигателей. М.: Машиностроение, 1984.

2. Александров В.Г., Майоров А.В., Потюков Н.П. Авиационный технический справочник. М.: Транспорт, 1975.

3. Ахмедзянов A.M., Дубравский Н.Г., Тунаков А.П. Диагностика состояния ВРД по термогазодимическим параметрам. М.: Машиностроение, 1983.

4. Барзилович Е.Ю., Каштанов В.А. Обслуживание систем при ограниченной информации об их надежности. М.: Сов. Радио, 1976.

5. Барзилович Е.Ю., Воскобоев В.Ф. Эксплуатация авиационных систем по состоянию (элементы теории). М.: Транспорт, 1981.

6. Бартлетт М.С. Введение в теорию случайных процессов. М.: Изд-во иностр. лит., 1958.

7. Белкин Ю.С., Боев Б.В., Гуревич О.С. и др. Под ред. Шевякова А.А. Интегральные системы автоматического управления силовыми установками самолетов. М.: Машиностроение, 1983.

8. Биргер И.А. Техническая диагностика. М.: Машиностроение, 1978.

9. Бом Д. Квантовая теория. М.: Наука, 1990.

10. Бонгард М.М. Проблема узнавания. М.: Наука, 1967.

11. И. Боумейстер Д., Экерт А., Цайлингер А. Физика квантовой информации. М.: Постмаркет, 2002.

12. Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. М.: Наука, 1987.

13. Васильев В.И., Гусев Ю.М., Иванов А.И. и др. Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов. М.: Машиностроение, 1989.

14. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969.

15. Винер Н. Интеграл Фурье и некоторые его приложения. М.: Физматгиз, 1963.

16. Волькенштейн М.В. Энтропия и информация. М.: Наука, 1986.

17. Гасленко Р.В. УМР по определению экономической эффективности мероприятий, направленных на совершенствование ИАОП. М.: МГТУГА, 1995.

18. Гельфанд И.М., Колмогоров А.Н., Яглома A.M. Теория информации. Изд-во ДАН СССР, 1956.

19. Гнеденко Б.В. Курс теории вероятностей. М.: Гостехиздат, 1954.

20. ГОСТ 27.003-90. Надежность в технике. Состав и общие правила,задание требований по надежности.

21. ОСТ 1-00156-75. Надежность изделий AT. Классификаторыпризнаков неисправностей.

22. ГОСТ 2.106-96. ЕСКД. Текстовые документы.

23. ГОСТ 3044-84. Преобразователи термоэлектрические. Номинальные статические характеристики преобразования.

24. Гусев Ю.М., Зайнашев Н.К., Иванов А.И. и др. Под ред. Петрова Б.Н. Проектирование систем автоматического управления ГТД. М.: Машиностроение, 1981.

25. Дейч А.М. Методы идентификации динамических объектов. М.: Энергия, 1979.

26. Давенпорт В.Б., Рут B.JL Введение в теорию случайных сигналов и шумов. М.: Изд-во иностр. лит., 1960.

27. Домотенко Н.Т., Кравец А.С. Масляные системы газотурбинных двигателей. М.:, Транспорт, 1972.

28. Дружинин Г.В. Надежность автоматизированных систем. М.: Энергия, 1977.

29. Дятлов В.А., Кабанов А.Н., Милов JI.T. Контроль динамических систем. Д.: Энергия, 1978.

30. Ермаков Г.И. Физико-химические методы определения металлов в авиамаслах с целью прогнозирования технического состояния двигателей. М.: Изд-во МГА, 1973.

31. Ермаков Г.И. Диагностирование технического состояния АД путем анализа работавшего масла. М.: Изд-во МГА, 1985.

32. Ермаков Г.И., Пивоваров В.А., Ицкович А.А. Диагностирование ГТД по результатам спектрального анализа работавших масел. М.: РИО МИИГА, 1986.

33. Ицкович А.А. Надежность летательных аппаратов и авиадвигателей. Часть 1. М.: РИО МИИГА, 1990.

34. Ицкович А.А. Надежность летательных аппаратов и авиадвигателей. Часть 2. М.: РИО МГТУГА, 1995.

35. Кадомцев Б.Б. Динамика и информация. М.: Ред. журн. УФН, 1997; 2-е изд. М.: Ред. журн. УФН, 1999.

36. Казанджан П.К., Тихонов Н.Д., Шулекин В.Т. Теория авиационных двигателей. М.: Транспорт, 2000.

37. Карасев В.А., Максимов В.П. Методы вибрационной диагностики машин. М.: Машиностроение, 1975.

38. Карасев В.А., Максимов В.П., Сидоренко М.К. Вибрационная диагностика ГТД. М.: Машиностроение, 1978.

39. Килин С.Я. Квантовая информация. М.: Ред. журн. УФН, 1999.

40. Климонтович Ю.Л. Статистическая физика. М.: Наука, 1982.

41. Климонтович Ю.Л. Статистическая теория открытых систем т. 1. М.: ТОО «Янус», 1995.

42. Клышко Д.Н. Основные понятия квантовой физики с операциональной точки зрения. М.: Ред. журн. «Успехи Физических Наук» (УФН) №9, 1998.

43. Клышко Д.Н. Неклассический свет. М.: Ред. журн. УФН №6, 1996.

44. Клышко Д.Н. Физические основы квантовой электроники. М.: Наука, 1986.

45. Кобринский Н.Е., Трахтенброт Б.А. Введение в теорию конечных автоматов. М.: Физматгиз, 1962.

46. Коняев Е.А. Техническая диагностика авиационных ГТД. Рига: РИО РКИИГА, 1989.

47. Косточкин В.В. Надежность авиационных двигателей и силовых установок. М.: Машиностроение, 1988.

48. Крылов К.А., Хаймзон М.Е. Долговечность узлов трения самолетов. М.: Транспорт, 1976.

49. Кудрицкий В.Д., Синица М.А., Чинаев П.И. Автоматизация контроля радиоэлектронной аппаратуры. М.: Сов. радио, 1977.

50. Куно А.Я., Генкин М.Д. Цифровая следящая фильтрация и спектральный анализ. М.: Транспорт, 1974.

51. Ланге Ф. Корреляционная электроника. М.: Судпромгиз, 1963.

52. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Наука, 1974.

53. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Часть 1. М.: Наука, 1976.

54. Лебедев В.Л. Случайные процессы в электрических и механических системах. М.: Физматгиз, 1958.

55. Левин Б.Р. Теория случайных процессов и ее применение в радиотехнике. М.: Сов. радио, 1957.

56. Леонтович М.А. Введение в термодинамику. Статистическая физика. М.: Наука, 1983.

57. Лишаев А.И., Егоров К.И., Есинский В.М. Автоматизация контроля, регистрации и анализа вибрации ГТД. Куйбышев: РИО КуАИ, 1974.

58. Лозицкий Л.П. Янко А.К. Лапшов В.Ф. Оценка технического состояния авиационных ГТД. М.: Воздушный транспорт, 1982.

59. Лэнинг Дж.Х., Бэттин Р.Г. Случайные процессы в задачах автоматического управления. М.: Изд-во иностр. лит., 1958.

60. Машошин О.Ф. Информационное обеспечение процессов диагностирования авиадвигателей. Егорьевск: В сб. научн. трудов конф. ЕАТК, 2001.

61. Машошин О.Ф. Оптимизация процессов диагностирования авиационной техники с использованием критериев информативности. М.: В сб. научн. трудов конф. ВВИА им. Проф. Н.Е.Жуковского, 2002.

62. Машошин О.Ф. Интерпретация теории К.Шеннона в классификационных задачах информационной диагностики авиадвигателей. М.: Научный вестник МГТУ ГА № 80, серия: эксплуатация воздушного транспорта и ремонт AT, безопасность полетов, 2004.

63. Машошин О.Ф., Бигус А.В. Информационное обеспечение процессов диагностирования авиационной техники. М.: Научный вестник МГТУ ГА № 49, серия: эксплуатация воздушного транспорта и ремонт AT, безопасность полетов, 2002.

64. Машошин О.Ф., Бигус А.В. Прогнозирование технического состояния ГТД по выбегу ротора. М.: Научный вестник МГТУ ГА №66, серия: эксплуатация воздушного транспорта и ремонт AT, безопасность полетов, 2003.

65. Миддлтон Д. Введение в статистическую теорию связи. М.: Сов. радио, 1961.

66. Некипелов Ю.Г. Авиационные топлива, смазочные материалы и специальные жидкости. Киев, КИИГА, 1986.

67. Павлов Б.В. Кибернетические методы технического диагноза. М.: Машгиз, 1964.

68. Павлов Б.В., Змановский В.А. Корреляционные методы прогнозирования аварий. М.: Вестник сельхознауки №5,1963.

69. Пархоменко П.П., Согомонян Б.С. Основы технической диагностики: (Оптимизация процессов диагностирования, аппаратные средства). М.: Энергоатомиздат, 1981.

70. Пересада В.П. Автоматическое распознавание образов. Л.: Энергия,1970.

71. Пивоваров В.А. Повреждаемость и диагностирование авиационных конструкций. М.: Транспорт, 1994.

72. Пивоваров В.А. Прогрессивные методы технической диагностики. М.: РИО МГТУГА, 1999.

73. Пивоваров В.А. Авиационный двигатель ПС-90. М.: РИО МГА,1989.

74. Пивоваров В.А. Современные методы и средства неразрушающего контроля состояния авиационной техники. М.: РИО МИИГА, 1988.

75. Пивоваров В.А., Машошин О.Ф. Дефектоскопия гражданской авиационной техники. М.: Транспорт, 1994.

76. Пивоваров В.А., Машошин О.Ф. Применение аппарата теории статистической классификации к задачам диагностирования авиационной техники. М.: Научный вестник МГТУ ГА №20, серия: эксплуатация воздушного транспорта и ремонт AT. Безопасность полетов, 1999.

77. Пугачев B.C. Теория случайных функций и ее применение к задачам автоматического управления. М.: Физматгиз, 1960.

78. РД 50-690-89. Методические указания. Надежность в технике. Методы оценки надежности по экспериментальным данным. М.: Гос. комитет СССР по управлению качеством продукции и стандартам, 1990.

79. Резников М.Е. Топлива и смазочные материалы для летательных аппаратов. М., Воениздат, 1973.

80. Свешников А.А. Прикладные методы теории случайных функций. М.: Судпромгиз, 1961.

81. Селиванов А.И. Основы теории старения машин. М.: Машиностроение, 1964.

82. Серия отчетов по НИР № 63-91. Разработка требований к программе ТО и Р авиадвигателей и методики ее формирования. М.: РИО МИИГА, 1992.

83. Синдеев И.М. К вопросу о синтезе логических схем для поиска неисправностей и контроля состояния сложных систем. М.: Изв. АН СССР. Техническая кибернетика №2, 1963.

84. Сиротин Н.Н., Коровкин Ю.М. Техническая диагностика авиационных газотурбинных двигателей. М.: Машиностроение, 1979.

85. Смирнов Н.Н., Чинючин Ю.М. Эксплуатационная технологичность летательных аппаратов. М.: Транспорт, 1994.

86. Смирнов Н.Н., Ицкович А.А. Обслуживание и ремонт авиационной техники по состоянию. М.: Транспорт, 1980.

87. Смирнов Н.Н., Владимиров Н.И., Черненко Ж.С. Техническая эксплуатация летательных аппаратов. М.: Транспорт, 1990.

88. Справочник под редакцией В.Г.Александрова. Контроль узлов трения самолетов и вертолетов. М.: Транспорт, 1976.

89. Отчет о 16-ой Всемирной конференции по НК в Монреале (Канада) (16th World Conference on NDT). http://www.ronktd.ru, 2004.

90. Степаненко В.П. Практическая диагностика авиационных ГТД. М.: Транспорт, 1985.

91. Стратонович P.J1. Теория информации. М.: Сов. радио, 1975.

92. Стратонович P.JI. Нелинейная неравновесная термодинамика. М.: Наука, 1985.

93. Тойбер M.JI. Электронные системы контроля и диагностики силовых установок. М.: Воздушный транспорт, 1990.

94. Теория автоматического управления силовыми установками летательных аппаратов/ Ю.С.Белкин, Л.Н.Гецов, Ю.В.Ковачич и др. Под ред. А.А.Шевякова. М.: Машиностроение, 1976.

95. Харкевич А.А. Спектры и анализ. М.: Физматгиз, 1961.

96. Холево А.С. Введение в квантовую теорию информации. М.: МЦНМО, 2002.

97. Цыпкин ЯЗ. Основы теории автоматических систем. М.: Наука,1977.

98. Шеннон К.Э. Работы по теории информации и кибернетике. Под ред. Р.Л.Добрушина, О.Б.Лупанова. М.: Изд-во иностр. литер., 1963.

99. Шилов Г.Е. Математический анализ. М.: Физматгиз, 1961.

100. Яглом A.M. Введение в теорию стационарных случайных функций. «Успехи математических наук», т.7,вып.5, 1952.

101. Ямпольский Я.И., Белоконь НИ. Диагностирование авиационной техники. М.: Транспорт, 1983.

102. Ebeling W., Freund J., Schweitzer F. Komplexe Strukturen: Entropic und Information. Stuttgart, Leipzig: B.G.Teubner, 1998.

103. Engine Test and measuring equipment "Oil Engine and Gas Turbine" vol. 30, №346, 1962.

104. Grunberg L., Scott D. The Effect of Additives on the Water-Induced Pitting of Ball Bearings, "Inst/ Petrol"? 1960.

105. Hirano F., Yamamoto T. Four-Ball Test on Lubricating Oils Containing Solid Particles, "Wear", 1959.

106. Kamber P. W., Zimmerman W. H. Progress in electronic propulsion control for commercials aircraft. // AIAA Paper, 1976, № 655.

107. Lee I., W., Chetham T.P., Wiesner I. B. Application of correlation analysis to the detection of periodic signals in noisl. Proc. IRE, Oct. 1950.

108. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press. Internat inf. 2001.

109. Staton L. Automatic Inspection and Diagnostic Systems for Automative Equipment, «SAE Preprints», 1962.

111. Airbus adopts infrared thermography for in-service inspection. -Insight. 1994. V. 36. No. 10.

112. Welch C., Eden T.J. Numerically enhanced thermal inspection of shuttle solid rocket motor inhibitor/liner/fuel bondline. - In: Rev. of Progress in Quant. NDE. Vol. 8B. New York: Plenum Press. 1989.

113. ИЗ. Коллинз Дж. Повреждение материалов в конструкциях. Анализ, предсказание, предотвращение: Пер. с англ.- М.: Мир, 1984.

114. Мэтью Д., Альфредсон Р. Применение вибрационного анализа для контроля технического состояния подшипников качения: Пер. с англ.-Конструирование и технология машиностроения.- М.: Мир, 1984.-т. 106, №3.-с.100-108.

115. Дорошко С.М. Контроль и диагностирование технического состояния газотурбинных двигателей по вибрационным параметрам.- М.: Транспорт, 1984.-128с.

116. ГоссоргЖ. Инфракрасная термография. М.: Мир, 1988.

117. Кольер Р., Берхарт, Лиин Л. Оптическая голография. М.: Мир,1973.

118. Волноводная оптоэлектроника. Под ред Т.Тамира. М.: Мир, 1991.

119. Беллман Р., Заде Л. Принятие решений в расплывчатых условиях//Вопросы анализа и процедуры принятия решений. М.: Мир, 1976.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.